119k views
4 votes
The half-life of radium-226 is 1620 yr. Given a sample of 1 g of radium-226, the quantity left Q(t) (in g) after t years is given by:

Q(t)= 1/2^t/1620

Required:
a. Convert this to an exponential function using base e.
b. Verify that the original function and the result from part (a) yield the same result for Q(0), Q(1620), and Q(3240).

1 Answer

2 votes

Answer:

(a)
e^(-0.000428 t)

Explanation:

We are given that

Half life of radium-226=1620 yr

The quantity left Q(t) after t years is given by


Q(t)=((1)/(2))^{(t)/(1620)}

a. We have to convert the given function into an exponential function using base e.


Q(t)=((1)/(2))^{(t)/(1620)}

=
(((1)/(2))^t)^{(1)/(1620)

=
e^(ln(1/2) t/1620)


=e^({(ln(1/2))/(1620)t)

=
e^(-0.000428 t)

(b)


Q(0)=e^(-0.000428 * 0)

=1

From original function

Q(0)=1


Q(1620)=((1)/(2))^{(t)/(1620)}


Q(1620)=(1)/(2)=0.5

From exponential function


Q(1620)=e^(-0.000428 * 1620)


=0.499\approx 0.5


Q(3240)=((1)/(2))^{(3240)/(1620))=0.25


Q(3240)=e^(-0.000428 * 3240)

Q(3240)=0.249=
\approx 0.25

Hence, verified.

User Martin Dorey
by
3.6k points