Answer:
a) Z = 2.575.
b) Z = 2.327.
c) Z = 1.96.
d) Z = 1.645.
e) Z = 1.88.
Explanation:
Question a:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Z-table as such z has a p-value of
.
That is z with a pvalue of
, so Z = 2.575.
Question b:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Z-table as such z has a p-value of
.
That is z with a pvalue of
, so Z = 2.327.
Question c:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Z-table as such z has a p-value of
.
That is z with a pvalue of
, so Z = 1.96.
Question d:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Z-table as such z has a p-value of
.
That is z with a pvalue of
, so Z = 1.645.
Question e:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Z-table as such z has a p-value of
.
That is z with a pvalue of
, so Z = 1.88.