Answer:
The length of QR is approximately 18.3 cm
Explanation:
The given parameters are;
The length of the side PR = 23 cm
The length of the side PQ = 22 cm
The measure of the angle QPR = 48°
By cosine rule, we have;
![\overline{QR}^2 = \overline{PR}^2 + \overline{PQ}^2 - 2 * \overline{PR} * \overline{PQ} * cos(\angle QPR)](https://img.qammunity.org/2022/formulas/mathematics/high-school/zid69qibyopkozmedys5emu96sos4b68f6.png)
Plugging in the values gives;
![\overline{QR}^2 = 23^2 + 22^2 - 2 * 23 * 22* cos(48^(\circ)) \approx 335.84](https://img.qammunity.org/2022/formulas/mathematics/high-school/tqjo5052oqfuphfxyd9mccixczwtvw1x1g.png)
![\therefore \overline{QR} \approx √(335.84) \approx 18.3](https://img.qammunity.org/2022/formulas/mathematics/high-school/1zzow9dsna3f6gpkgyrrnn35rr1f2z1nu2.png)
The length of QR ≈ 18.3 cm