22.8k views
0 votes
Please help. the packet is due tonight

Please help. the packet is due tonight-example-1
User Idan Dagan
by
3.4k points

1 Answer

4 votes

Answer:

[C]
\displaystyle (-3)/(250)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Terms/Coefficients
  • Factoring
  • Functions
  • Function Notation
  • Conjugations

Calculus

  • Limits
  • Limit Rule [Variable Direct Substitution]:
    \displaystyle \lim_(x \to c) x = c
  • Limit Property [Multiplied Constant]:
    \displaystyle \lim_(x \to c) bf(x) = b \lim_(x \to c) f(x)
  • Derivatives
  • Definition of a Derivative:
    \displaystyle f'(x) = \lim_(h \to 0) (f(x + h) - f(x))/(h)

Explanation:

Step 1: Define

Identify


\displaystyle g(x) = \lim_(h \to 0) (f(x + h) - f(x))/(h)


\displaystyle f(x) = (3)/(√(x - 4))


\displaystyle g(29)

Step 2: Differentiate

  1. Substitute in function [Function g(x)]:
    \displaystyle g(x) = \lim_(h \to 0) ((3)/(√(x + h - 4)) - (3)/(√(x - 4)))/(h)
  2. Substitute in x [Function g(x)]:
    \displaystyle g(29) = \lim_(h \to 0) ((3)/(√(29 + h - 4)) - (3)/(√(29 - 4)))/(h)
  3. Simplify:
    \displaystyle g(29) = \lim_(h \to 0) ((3)/(√(25 + h)) - (3)/(5))/(h)
  4. Rewrite:
    \displaystyle g(29) = \lim_(h \to 0) ((15)/(5√(25 + h)) - (3√(25 + h))/(5√(25 + h)))/(h)
  5. [Subtraction] Combine like terms:
    \displaystyle g(29) = \lim_(h \to 0) ((15 - 3√(25 + h))/(5√(25 + h)))/(h)
  6. Factor:
    \displaystyle g(29) = \lim_(h \to 0) ((3(5 - √(25 + h)))/(5√(25 + h)))/(h)
  7. Rewrite:
    \displaystyle g(29) = \lim_(h \to 0) (3(5 - √(25 + h)))/(5h√(25 + h))
  8. Rewrite [Limit Property - Multiplied Constant]:
    \displaystyle g(29) = (3)/(5) \lim_(h \to 0) (5 - √(25 + h))/(h√(25 + h))
  9. Root Conjugation:
    \displaystyle g(29) = (3)/(5) \lim_(h \to 0) (5 - √(25 + h))/(h√(25 + h)) \cdot (5 + √(25 + h))/(5 + √(25 + h))
  10. Multiply:
    \displaystyle g(29) = (3)/(5) \lim_(h \to 0) (-h)/(5h√(25 + h) + h^2 + 25h)
  11. Factor:
    \displaystyle g(29) = (3)/(5) \lim_(h \to 0) (-h)/(h(5√(25 + h) + h + 25))
  12. Simplify:
    \displaystyle g(29) = (3)/(5) \lim_(h \to 0) (-1)/(5√(25 + h) + h + 25)
  13. Evaluate limit [Limit Rule - Variable Direct Substitution]:
    \displaystyle g(29) = (3)/(5) \lim_(h \to 0) (-1)/(5√(25 + 0) + 0 + 25)
  14. Simplify:
    \displaystyle g(29) = (3)/(5) \cdot (-1)/(50)
  15. Multiply:
    \displaystyle g(29) = (-3)/(250)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

User Sbking
by
3.4k points