65.7k views
15 votes
3. Find the area of a trapezoid with bases 20 cm and 14 cm and height 5 cm.

User Jdoroy
by
4.0k points

2 Answers

5 votes

Given :

  • Base = 20 cm and 14 cm.
  • Height = 5 cm.

To find :

  • Area of trapezoid.

Solution :

We know,


{\qquad \dashrightarrow{ \bf{Area_((Trapezoid))= (1)/(2 ) * (b_(1) + b_(2)) * h} }}

Now, Substituting the values :


{\qquad \dashrightarrow{ \bf{Area_((Trapezoid))= (1)/(2 ) * (20 + 14) * 5} }}


{\qquad \dashrightarrow{ \bf{Area_((Trapezoid))= (5)/(2 ) * 34} }}


{\qquad \dashrightarrow{ \bf{Area_((Trapezoid))= (5)/( \cancel2 ) * \cancel{34}} }}


{\qquad \dashrightarrow{ \bf{Area_((Trapezoid))=5 * 17} }}


{\qquad \dashrightarrow{ \bf{Area_((Trapezoid))=85} }}

Therefore,

  • The area of the trapezoid is 85 cm² .
User Smishra
by
4.2k points
6 votes

Answer:

85cm²

Explanation:

Here we are given a trapezium with base = 20cm and 14cm and height = 5cm . And we are interested in finding the area of the trapezium .

Figure :-


\setlength{\unitlength}{1.5cm}\begin{picture}\thicklines\qbezier(0,0)(0,0)(1,2.2)\qbezier(0,0)(0,0)(4,0)\qbezier(3,2.2)(4,0)(4,0)\qbezier(1.5,2.2)(0,2.2)(3,2.2)\put(0.8,2.4){$\bf A $}\put(3,2.4){$\bf D $}\put(-0.3,-0.3){$\bf B$}\put(4,-0.3){$\bf C$}\put(4.4,0){\vector(0,0){2.2}}\put( 4.4, 0){\vector(0,-1){0.1}}\put(4.6,1){$\bf 5\ cm$}\put(0, -0.5){\vector(1,0){4}}\put(0, -0.5){\vector( - 1, 0){0.1}}\put(1.7, - 0.9){$\bf 20\ cm $}\put(0.8, 2.8){\vector(1,0){2.5}}\put(0.8, 2.8){\vector( - 1, 0){0.1}}\put(1.7, 3){$\bf 14\ cm $}\end{picture}

As we know that the area of trapezium is given by ,


\longrightarrow\rm Area =(1)/(2)(sum \ of \ || \ sides)* height

  • Here 20cm and 14cm are parallel sides .

Substitute the respective values in stated formula,


\longrightarrow\rm Area =(1)/(2)(20cm +14cm)5cm \\

Solve the parenthesis ,


\longrightarrow\rm Area =(1)/(2)* (34cm)(5cm)

Simplify by multiplying ,


\longrightarrow\rm \underline{\underline{\red{{Area = 85\ cm^2}}}}

And we are done !


\rule{200}4

User JeremyD
by
3.7k points