![\huge\bold{Given:}](https://img.qammunity.org/2022/formulas/mathematics/high-school/rbcffpft3x63zt8q54s6192biqvol38glm.png)
Length of the perpendicular = 6 ft.
Length of the base = 8 ft.
![\huge\bold{To\:find:}](https://img.qammunity.org/2022/formulas/mathematics/high-school/tp3t71n5eej9kzrnm1erni62kehm6rtyyd.png)
The length of the missing side.
![\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/ab3cr96jhmwhpbs7gmbhd859hlno5qbu4k.png)
![\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}](https://img.qammunity.org/2022/formulas/mathematics/college/smsuei5aad1btuofe1gnk5qrknj5lf3aot.png)
Let
be the side of the hypotenuse.
Using Pythagoras theorem, we have
( Hypotenuse )² = ( Perpendicular )² + ( Base )²
= ( 6 ft )² + ( 8 ft) ²
= 36 ft² + 64 ft²
= 100 ft²
=
![\sqrt{100 \: {ft}^(2) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/fq0kwdcv8hzzso8fg0uix73yulmxth01xj.png)
=
![\sqrt{10 * 10 \: {ft}^(2) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/y8oaybm3t4t9j0mgo0wbyldbcxpx45fae8.png)
=
![\sqrt{ ({10 \: ft})^(2) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/fv69jb6c9yiqlbwz84s8sb8rosejm2yyqr.png)
= 10 ft.
Therefore, the length of the missing side
is 10 feet.
![\huge\bold{To\:verify :}](https://img.qammunity.org/2022/formulas/mathematics/college/3vz0sqegs4iaopxtar7cxanmh9uehjhk8q.png)
( 10 ft )² = ( 6 ft )² + ( 8 ft ) ²
100 ft² = 36 ft² + 64 ft²
100 ft² = 100 ft²
L.H.S. = R. H. S.
Hence verified. ✔
![\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{☂}}}}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/pe9m88x77tievb5pqir3kcm7uhn7kk7058.png)