53.7k views
2 votes
Find the missing length in the right triangle.

Find the missing length in the right triangle.-example-1
User SWIK
by
8.5k points

1 Answer

4 votes


\huge\bold{Given:}

Length of the perpendicular = 6 ft.

Length of the base = 8 ft.


\huge\bold{To\:find:}

The length of the missing side.


\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}


\longrightarrow{\purple{x\:=\:10\:feet}}


\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}

Let
be the side of the hypotenuse.

Using Pythagoras theorem, we have

( Hypotenuse )² = ( Perpendicular )² + ( Base )²


\longrightarrow{\blue{}}
{x}^(2) = ( 6 ft )² + ( 8 ft) ²


\longrightarrow{\blue{}}
{x}^(2) = 36 ft² + 64 ft²


\longrightarrow{\blue{}}
{x}^(2) = 100 ft²


\longrightarrow{\blue{}}
x =
\sqrt{100 \: {ft}^(2) }


\longrightarrow{\blue{}}
x =
\sqrt{10 * 10 \: {ft}^(2) }


\longrightarrow{\blue{}}
x =
\sqrt{ ({10 \: ft})^(2) }


\longrightarrow{\blue{}}
x = 10 ft.

Therefore, the length of the missing side
x is 10 feet.


\huge\bold{To\:verify :}


\longrightarrow{\green{}} ( 10 ft )² = ( 6 ft )² + ( 8 ft ) ²


\longrightarrow{\green{}} 100 ft² = 36 ft² + 64 ft²


\longrightarrow{\green{}} 100 ft² = 100 ft²


\longrightarrow{\green{}} L.H.S. = R. H. S.

Hence verified. ✔


\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{☂}}}}}

User TypeIA
by
6.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories