53.7k views
2 votes
Find the missing length in the right triangle.

Find the missing length in the right triangle.-example-1
User SWIK
by
3.7k points

1 Answer

4 votes


\huge\bold{Given:}

Length of the perpendicular = 6 ft.

Length of the base = 8 ft.


\huge\bold{To\:find:}

The length of the missing side.


\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}


\longrightarrow{\purple{x\:=\:10\:feet}}


\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}

Let
be the side of the hypotenuse.

Using Pythagoras theorem, we have

( Hypotenuse )² = ( Perpendicular )² + ( Base )²


\longrightarrow{\blue{}}
{x}^(2) = ( 6 ft )² + ( 8 ft) ²


\longrightarrow{\blue{}}
{x}^(2) = 36 ft² + 64 ft²


\longrightarrow{\blue{}}
{x}^(2) = 100 ft²


\longrightarrow{\blue{}}
x =
\sqrt{100 \: {ft}^(2) }


\longrightarrow{\blue{}}
x =
\sqrt{10 * 10 \: {ft}^(2) }


\longrightarrow{\blue{}}
x =
\sqrt{ ({10 \: ft})^(2) }


\longrightarrow{\blue{}}
x = 10 ft.

Therefore, the length of the missing side
x is 10 feet.


\huge\bold{To\:verify :}


\longrightarrow{\green{}} ( 10 ft )² = ( 6 ft )² + ( 8 ft ) ²


\longrightarrow{\green{}} 100 ft² = 36 ft² + 64 ft²


\longrightarrow{\green{}} 100 ft² = 100 ft²


\longrightarrow{\green{}} L.H.S. = R. H. S.

Hence verified. ✔


\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{☂}}}}}

User TypeIA
by
3.3k points