20.5k views
2 votes
For a sixth-order Butterworth high pass filter with cutoff frequency 3 rad/s, compute the following:

a. The locations of the poles.
b. The transfer function H(s).
c. The corresponding LCCDE description.

User Cald
by
6.0k points

1 Answer

0 votes

Solution :

Given :

A six order Butterworth high pass filter.

∴ n = 6,
w_c=1 \ rad/s

a). The location at poles :


$s^6-(w_c)^6=0$


$s^6=(w_c)^6=1^6$


$s^6 = 1$

Therefore, it has 6 repeated poles at s = 1.

b). The transfer function H(S) :

Transfer function H(S)
$=(1)/(1+j\left((w_c)/(s)\right)^6)$


$=(1)/(1-\left((w_c)/(s)\right)^6)$

∴ H(S)
$=(s^6)/(s^6-(w_c)^6)=(s^6)/(s^6-1)$

H(S)
$=(Y(s))/(X(s))=(s^6)/(s^6-1)$

c). The corresponding LCCDE description :


$=(Y(s))/(X(s))=(s^6)/(s^6-1)$


$Y(s)(s^6-1) = s^6 * (s)$


$Y(s)s^6-y(s).1 = s^6 * (s)$

By taking inverse Laplace transformation on BS


$L^(-1)[Y(s)s^6-Y(s)1]=L^(-1)[s^6 * (s)]$


$(d^6y(t))/(dt^6)-y(t)=(d^6 * (t))/(dt^6)$

Hence solved.

User Quonux
by
6.7k points