Solution :
a). Let x denotes ACT scores.
ACT scores =
![$\{ 22,28,20,21,28,23,26 \} ; n = 7$](https://img.qammunity.org/2022/formulas/geography/high-school/5zf7q3jxq3xdx9jpnmyuzug6apbjfor5sz.png)
Mean,
![$(\overline x)=(\sum x_i)/(n)$](https://img.qammunity.org/2022/formulas/geography/high-school/2khn7ulymrkdh5h0pzfgjy3prdqq69542b.png)
![$=(168)/(7)=24$](https://img.qammunity.org/2022/formulas/geography/high-school/9a6y9vz8rafp3qj65j8daopad25bzbw564.png)
Sample variance,
![$S^2=(1)/(n-1)\left(\sum x_i^2-n\overline x^2 \right)$](https://img.qammunity.org/2022/formulas/geography/high-school/jmkolhnkyyfzxi6ldjw6d8cbqf45j3ugg8.png)
![$=(1)/(6)(4098-7 * 24^2)$](https://img.qammunity.org/2022/formulas/geography/high-school/25u6il4zhiljcawl8oqwr1k84izjnw29f1.png)
![$=(66)/(6)$](https://img.qammunity.org/2022/formulas/geography/high-school/rnteei20h23kmvypixv9nxgvn0k7f9uzb8.png)
= 11
b). To test whether or not variance of ACT scores of population (say
) of the UTC students is significantly more than 8.
Consider the hypothesis :
vs
![$H_a: \sigma^2 >8$](https://img.qammunity.org/2022/formulas/geography/high-school/apic3r5ouza7y8yg7en1alvv2vl2rmmbsj.png)
It is a right tailed test and α = 0.05
We have
![$x^2_(n-1) = ((n-1)s^2)/(\sigma^2)$](https://img.qammunity.org/2022/formulas/geography/high-school/jdscuybviu656mwm7h7s4x7chskg0r9yss.png)
So test statics is
![$x^2_7=((7-1)11)/(8)$](https://img.qammunity.org/2022/formulas/geography/high-school/o2eyoyb7etoivlrqnn1y2qt8c10xqnqfzy.png)
![$=(6 * 11)/(8)$](https://img.qammunity.org/2022/formulas/geography/high-school/qeze3nunqtyfdfj5vx7g3iibtkdoacmfx4.png)
= 8.25
Since our
and it falls in a acceptation region, hence we fail to reject
and conclude that variance is not greater than 8 significantly.