30.1k views
3 votes
Can anyone help me solve this

Can anyone help me solve this-example-1
User Lnjuanj
by
8.1k points

2 Answers

5 votes


\longrightarrow{\green{ D. \:3 {a}^(4) √(2a) }}


\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}


\sqrt{18 {a}^(9) } \\ \\ ➝ \: \sqrt{2 * 3 * 3 * {a}^(9) } \\ \\ ➝ \: \sqrt{2 * ({3})^(2) * {( {a}^(4)) }^(2) a } \\ \\ [∵( { {a}^(4) )}^(2) a = {a}^(4 * 2 + 1) = {a}^(9)] \\ \\ ➝ \: 3 * {a}^(4) √(2a) \\ \\ ➝ \: 3 {a}^(4) √(2a)


\pink{\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese \: \: Mystique35}}}}}

User Avli
by
7.8k points
4 votes

Answer:

The answer is
3a^(4)√(2a)

Explanation:

To simplify the radical, start by factoring 9 out of 18 for step 1. Next, for step 2, rewrite 9 as
3^(2). Then, factor out
a^(8) for step 3. For step 4, rewrite
a^(8) as
(a^(4))^(2). Then, for step 5, move the 2 in the radical. Rewrite
3^(2)(a^(4))^(2)as
(3a^(4))^(2) for step 6. Then, add parentheses to the radical for step 7. Finally, for step 8 pull the terms out from under the radical, and the answer is
3a^(4)√(2a).

Step 1:
\sqrt{9(2)a^(9) }

Step 2:
\sqrt{3^(2)*2a^(9)

Step 3:
\sqrt{3^(2)*2(a^(8)a) }

Step 4:
\sqrt{3^(2)*2((a^(4))^(2)) }

Step 5:
\sqrt{3^(2)(a^(4))^(2)*2a }

Step 6:
\sqrt{(3a^(4) )^(2)*2a }

Step 7:
\sqrt{(3a^(4))^(2)*(2a) }

Step 8:
3a^(4)√(2a)

User Hibento
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories