30.1k views
3 votes
Can anyone help me solve this

Can anyone help me solve this-example-1
User Lnjuanj
by
5.0k points

2 Answers

5 votes


\longrightarrow{\green{ D. \:3 {a}^(4) √(2a) }}


\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}


\sqrt{18 {a}^(9) } \\ \\ ➝ \: \sqrt{2 * 3 * 3 * {a}^(9) } \\ \\ ➝ \: \sqrt{2 * ({3})^(2) * {( {a}^(4)) }^(2) a } \\ \\ [∵( { {a}^(4) )}^(2) a = {a}^(4 * 2 + 1) = {a}^(9)] \\ \\ ➝ \: 3 * {a}^(4) √(2a) \\ \\ ➝ \: 3 {a}^(4) √(2a)


\pink{\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese \: \: Mystique35}}}}}

User Avli
by
4.8k points
4 votes

Answer:

The answer is
3a^(4)√(2a)

Explanation:

To simplify the radical, start by factoring 9 out of 18 for step 1. Next, for step 2, rewrite 9 as
3^(2). Then, factor out
a^(8) for step 3. For step 4, rewrite
a^(8) as
(a^(4))^(2). Then, for step 5, move the 2 in the radical. Rewrite
3^(2)(a^(4))^(2)as
(3a^(4))^(2) for step 6. Then, add parentheses to the radical for step 7. Finally, for step 8 pull the terms out from under the radical, and the answer is
3a^(4)√(2a).

Step 1:
\sqrt{9(2)a^(9) }

Step 2:
\sqrt{3^(2)*2a^(9)

Step 3:
\sqrt{3^(2)*2(a^(8)a) }

Step 4:
\sqrt{3^(2)*2((a^(4))^(2)) }

Step 5:
\sqrt{3^(2)(a^(4))^(2)*2a }

Step 6:
\sqrt{(3a^(4) )^(2)*2a }

Step 7:
\sqrt{(3a^(4))^(2)*(2a) }

Step 8:
3a^(4)√(2a)

User Hibento
by
4.7k points