Answer:
117.83° F
Step-by-step explanation:
Using Newton's Law of Cooling which can be expressed as:
![(dT)/(dt)= k(T-T_1)](https://img.qammunity.org/2022/formulas/physics/college/fql8iya6tili90wbig97hjfoevqrzlptfc.png)
The differential equation can be computed as:
![(dT)/(dt)= k(T-70)](https://img.qammunity.org/2022/formulas/physics/college/t4wm65ohoociqdpz0qwciuo2c521fiv45z.png)
![(dT)/((T-70))= kdt](https://img.qammunity.org/2022/formulas/physics/college/ul6uys8hrlykhbcx6po5h4n3bzqxypg192.png)
![\int (dT)/((T-70))= \int kdt](https://img.qammunity.org/2022/formulas/physics/college/5nl9k3ivs1jp8bgpfp14ky3i8qbito5cp1.png)
![In|T-70| = kt +C](https://img.qammunity.org/2022/formulas/physics/college/nqmjiilg31ixcouzl9d60gib9dz1yayq40.png)
![T- 70 = e^(kt+C) \\ \\ T = 70+e^(kt+C) \\ \\ T = 70 + C_1e^(kt) --- (1)](https://img.qammunity.org/2022/formulas/physics/college/mxelwcsor9jaoihsrxojhqcrpgbyrp1u80.png)
where;
![C_1 = e^C](https://img.qammunity.org/2022/formulas/physics/college/jycvxpd73ib4y4thv96qxpkw5qi2emch40.png)
At the initial condition, T(0)= 350
![350 = 70 C_1^(k*0)](https://img.qammunity.org/2022/formulas/physics/college/qw8on69prpbjy14ykuqv3qkfc5dshi1221.png)
![350 -70 = C_1](https://img.qammunity.org/2022/formulas/physics/college/vqryljpjwo3net272glr32zhyne8znbhqo.png)
![280 = C_1](https://img.qammunity.org/2022/formulas/physics/college/swyyez32dinuzol8g9c1sualbeg0ta4rsq.png)
replacing
= 280 into (1)
Hence, the differential equation becomes:
![T(t) = 70 + 280 e^(kt)](https://img.qammunity.org/2022/formulas/physics/college/lci6jy4mg47bnvd9mmoeq9l8ydwmsacow2.png)
when;
time (t) = 1 hour
T(1) = 250
Since;
![250 = 70 + 280 e^(k*1)](https://img.qammunity.org/2022/formulas/physics/college/kfuhrhibc41uvymizfkaz3r5jx9razlyp1.png)
![180 = 280e^k \\ \\ (180)/(280)= e^k](https://img.qammunity.org/2022/formulas/physics/college/75bu283ypulvogkq2mdu28yfemcp8icvvp.png)
![k = In ((180)/(280))](https://img.qammunity.org/2022/formulas/physics/college/et58plggm4e7m4bt3vr32eovxvvaw3d3hd.png)
k = -0.4418
Therefore;
T(t) = 70 + 280e^{(-0.4418)}t
After 4 hours, the temperature is:
T(t) = 70 + 280e^{(-0.4418)}4
T(4) = 117.83° F