26.0k views
3 votes
A car travels 32 km due north and

then 46 km in a direction 40° west of
north. Find the DIRECTION of the car's
resultant vector.

1 Answer

4 votes

Answer:

Ifa,bandcare the

sides opposite to anglesA,B,&C.

By Cosine Rule,

b

2

=32

2

+46

2

−(2×32×46cos140°)

b

2

=1024+2116−2944cos140°

b

2

=3140−2944cos140°

b

2

=3140+2255.234841

b

2

=5395.234841

b=73.45

By Sine Rule,

sinC

32

=

sin140°

73.45

sinC=

73.45

32sin140°

sinC=0.2800

C=16.26°

The direction of the resultant

vector is measured from0°east

to the resultant, this angle isθ−90°,

90°is the total angle in

the first quadrant.

∴θ−90°=C+ϕ

ϕ=50°{Alternate angles are equal}

∴The direction of the car’s

resultant vector is50°+16.26°=66.26°south of east

Explanation:

A car travels 32 km due north and then 46 km in a direction 40° west of north. Find-example-1
User Agilarasan Anbu
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories