80.4k views
2 votes
Logarithmic differentiation of f' when y=(Inx)^cosx (x>1)

1 Answer

2 votes

Answer:


(dy)/(dx) = (lnx)^(cosx ) \cdot [(cosx )/(ln x) \cdot (1)/(x) - sin x ( ln ( ln x)) ]

Explanation:


y = (ln x)^(cosx)\\ln y = cos x (ln ( ln x)) \\
[ taking \ logarithm \ on \ both \ sides ]


(1)/(y) (dy )/(dx) = (cosx )/(ln x) \cdot (1)/(x) + ln ( ln x) (-sin x)
[Chain rule : uv = u (dv)/(dx) + v (du)/(dv) ]


(dy)/(dx) = y * [(cosx )/(ln x) \cdot (1)/(x) - sin x ( ln ( ln x)) ]


(dy)/(dx) = (lnx)^(cosx ) \cdot [(cosx )/(ln x) \cdot (1)/(x) - sin x ( ln ( ln x)) ]
[ substituting \ the \ value \ of \ y]

User Kelend
by
4.3k points