218k views
2 votes
If z varies directly with x and inversely with y, when x = 2, y = 5, and z = 10, what is z when x = 3 and y = 15?

User Anil Shah
by
8.5k points

1 Answer

3 votes

Given:

z varies directly with x and inversely with y, when x = 2, y = 5, and z = 10.

To find:

The value of z when x=3 and y=15.

Solution:

It is given that z varies directly with x and inversely with y. So,


z\propto (x)/(y)


z=k\cdot (x)/(y) ...(i)

Where k is the constant of proportionality.

We have x = 2, y = 5, and z = 10. After substituting these values, we get


10=k\cdot (2)/(5)


10* 5=2k


(50)/(2)=k


25=k

The value of k is 25. After substituting k=25 in (i), we get


z=25\cdot (x)/(y) ...(ii)

We need to find the value of z when x=3 and y=15. Substituting x=3 and y=15 in (ii), we get


z=25\cdot (3)/(15)


z=25\cdot (1)/(5)


z=5

Therefore, the value of z is 5 when x = 3 and y = 15.

User RusHughes
by
7.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories