184k views
2 votes
Differentiate the following by using "limit"


\displaystyle (d)/(dx) √(x)
​​

1 Answer

5 votes

Answer:


\rm \displaystyle (d )/(dx) √(x) = ( 1 )/( 2√(x ) )

Explanation:

we want to differentiate the following by using limit:


\displaystyle (d)/(dx) √(x)

derivative definition by limit given by


\rm \displaystyle (d)/(dx) = \lim _(\Delta x \to 0) \left( (f(x + \Delta x) - f(x))/( \Delta x) \right)

given that,

f(x)=√x

so,

f(x+∆x)=√(x+∆x)

thus substitute:


\rm \displaystyle (d )/(dx) √(x) = \lim _(\Delta x \to 0) \left( ( √(x + \Delta x)- √(x) )/( \Delta x) \right)

multiply both the numerator and denominator by the conjugate of the numerator:


\rm \displaystyle (d )/(dx) √(x) = \lim _(\Delta x \to 0) \left( ( √(x + \Delta x)- √(x) )/( \Delta x) * ( √(x + \Delta x) + √(x) )/(√(x + \Delta x) + √(x)) \right)

simplify which yields:


\rm \displaystyle (d )/(dx) √(x) = \lim _(\Delta x \to 0) \left( ( (√(x + \Delta x)) ^(2) - x )/( \Delta x(√(x + \Delta x) + √(x))) \right)

simplify square:


\rm \displaystyle (d )/(dx) √(x) = \lim _( \Delta x \to 0) \left( ( x + \Delta x - x )/( \Delta x(√(x + \Delta x) + √(x))) \right)

collect like terms:


\rm \displaystyle (d )/(dx) √(x) = \lim _(\Delta x \to 0) \left( ( \Delta x )/( \Delta x(√(x + \Delta x) + √(x))) \right)

reduce fraction:


\rm \displaystyle (d )/(dx) √(x) = \lim _(\Delta x \to 0) \left( ( 1 )/( (√(x + \Delta x) + √(x))) \right)

get rid of ∆x as we are approaching its to 0


\rm \displaystyle (d )/(dx) √(x) = ( 1 )/( √(x ) + √(x))

simplify addition:


\rm \displaystyle (d )/(dx) √(x) = ( 1 )/( 2√(x ) )

and we are done!

User Barry Gallagher
by
7.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories