184k views
2 votes
Differentiate the following by using "limit"


\displaystyle (d)/(dx) √(x)
​​

1 Answer

5 votes

Answer:


\rm \displaystyle (d )/(dx) √(x) = ( 1 )/( 2√(x ) )

Explanation:

we want to differentiate the following by using limit:


\displaystyle (d)/(dx) √(x)

derivative definition by limit given by


\rm \displaystyle (d)/(dx) = \lim _(\Delta x \to 0) \left( (f(x + \Delta x) - f(x))/( \Delta x) \right)

given that,

f(x)=√x

so,

f(x+∆x)=√(x+∆x)

thus substitute:


\rm \displaystyle (d )/(dx) √(x) = \lim _(\Delta x \to 0) \left( ( √(x + \Delta x)- √(x) )/( \Delta x) \right)

multiply both the numerator and denominator by the conjugate of the numerator:


\rm \displaystyle (d )/(dx) √(x) = \lim _(\Delta x \to 0) \left( ( √(x + \Delta x)- √(x) )/( \Delta x) * ( √(x + \Delta x) + √(x) )/(√(x + \Delta x) + √(x)) \right)

simplify which yields:


\rm \displaystyle (d )/(dx) √(x) = \lim _(\Delta x \to 0) \left( ( (√(x + \Delta x)) ^(2) - x )/( \Delta x(√(x + \Delta x) + √(x))) \right)

simplify square:


\rm \displaystyle (d )/(dx) √(x) = \lim _( \Delta x \to 0) \left( ( x + \Delta x - x )/( \Delta x(√(x + \Delta x) + √(x))) \right)

collect like terms:


\rm \displaystyle (d )/(dx) √(x) = \lim _(\Delta x \to 0) \left( ( \Delta x )/( \Delta x(√(x + \Delta x) + √(x))) \right)

reduce fraction:


\rm \displaystyle (d )/(dx) √(x) = \lim _(\Delta x \to 0) \left( ( 1 )/( (√(x + \Delta x) + √(x))) \right)

get rid of ∆x as we are approaching its to 0


\rm \displaystyle (d )/(dx) √(x) = ( 1 )/( √(x ) + √(x))

simplify addition:


\rm \displaystyle (d )/(dx) √(x) = ( 1 )/( 2√(x ) )

and we are done!

User Barry Gallagher
by
2.7k points