35.0k views
5 votes
Please help with 15, 17 and 19

Please help with 15, 17 and 19-example-1
User Alex Quinn
by
6.7k points

1 Answer

4 votes

Given:

15.
\log_{(1)/(2)}\left((1)/(2)\right)

17.
\log_{(3)/(4)}\left((4)/(3)\right)

19.
2^(\log_2100)

To find:

The values of the given logarithms by using the properties of logarithms.

Solution:

15. We have,


\log_{(1)/(2)}\left((1)/(2)\right)

Using property of logarithms, we get


\log_{(1)/(2)}\left((1)/(2)\right)=1
[\because \log_aa=1]

Therefore, the value of
\log_{(1)/(2)}\left((1)/(2)\right) is 1.

17. We have,


\log_{(3)/(4)}\left((4)/(3)\right)

Using properties of logarithms, we get


\log_{(3)/(4)}\left((4)/(3)\right)=-\log_{(3)/(4)}\left((3)/(4)\right)
[\because \log_a(m)/(n)=-\log_a(n)/(m)]


\log_{(3)/(4)}\left((4)/(3)\right)=-1
[\because \log_aa=1]

Therefore, the value of
\log_{(3)/(4)}\left((4)/(3)\right) is -1.

19. We have,


2^(\log_2100)

Using property of logarithms, we get


2^(\log_2100)=100
[\because a^(\log_ax)=x]

Therefore, the value of
2^(\log_2100) is 100.

User Tallulah
by
5.8k points