![\huge\bold{Given :}](https://img.qammunity.org/2022/formulas/mathematics/college/gj9wcs8fdzrt2n388jjti7i1n7l36q6c68.png)
Angle 1 = ( 8x + 5 ) ...(i)
Angle 2 = ( 4x + 9 ) ...(ii)
Angle 3 = 90° ( ∵ it is a right-angled triangle )
![\huge\bold{To\:find :}](https://img.qammunity.org/2022/formulas/mathematics/college/gt95ydfiq4rolf5y187gbpxt3epevquaah.png)
The value of the larger angle of the two acute angles.
![\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/ab3cr96jhmwhpbs7gmbhd859hlno5qbu4k.png)
. ✅
![\large\mathfrak{{\pmb{\underline{\blue{Step-by-step\:explanation}}{\blue{:}}}}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/q124l2imy7pwz3lqkkacowe7y24a6njhkg.png)
We know that,
![\sf\pink{Sum\:of\:angles\:of\:a\:triangle\:=\:180°}](https://img.qammunity.org/2022/formulas/mathematics/college/7zdb35f60gj33v3x5uwjogyympaqu5ijrl.png)
➪ ∠ 1 + ∠ 2 + ∠ 3 = 180°
➪ 8x + 5 + 4x + 9 + 90° = 180°
➪ 12x + 104° = 180°
➪ 12x = 180° - 104°
➪ 12x = 76°
➪ x =
![(76° )/(12)](https://img.qammunity.org/2022/formulas/mathematics/high-school/syqilnj4tylbx1hb1uuqd7u18rz60odgbv.png)
➪ x = 6.333°
The value of x is 6.333°.
Now,
Substituting the value of x in eq. (i) & (ii), we have
Angle 1 = 8x + 5
= 8 x 6.333 + 5
= 50.666 + 5
= 55.67°
Angle 2 = 4x + 9
= 4 x 6.333 + 9
= 25.332 + 9
= 34.332°
Clearly, angle 1 is greater than angle 2.
Therefore, the value of the larger angle of the two acute angles is 55.67°.
![\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{♡}}}}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/q7cs8gv30nl6q5c9unepipja5ofl77obbh.png)