141k views
2 votes
Analyze the rational function: f(x) = (x^2 - 4)/(x^3 - 3x^2 - 10x)

User KanwarG
by
4.9k points

1 Answer

0 votes

Answer:

The function
f(x) = (x^(2)-4)/(x^(3)-3\cdot x^(2)-10\cdot x) has a zero:
x = 2, and two poles:
x = 0 and
x = 5.

Explanation:

Let be
f(x) = (x^(2)-4)/(x^(3)-3\cdot x^(2)-10\cdot x) a rational function armed with polynomial function. We proceed to factor the expression to the find the zeros and poles of the rational function:

1)
f(x) = (x^(2)-4)/(x^(3)-3\cdot x^(2)-10\cdot x) Given

2)
f(x) = ((x + 2)\cdot (x-2))/(x\cdot (x^(2)-3\cdot x -10))
a^(2) - b^(2) = (a + b)\cdot (a - b)/Associative, commutative and distributive properties.

3)
f(x) = ((x+2)\cdot (x-2))/(x\cdot (x-5)\cdot (x+2))
x^(2) -(a+b)\cdot x + a\cdot b = (x-a)\cdot (x-b)

4)
f(x) = (x-2)/(x\cdot (x-5)) Commutative property/Existence of multiplicative inverse/Modulative property/Result

The function
f(x) = (x^(2)-4)/(x^(3)-3\cdot x^(2)-10\cdot x) has a zero:
x = 2, and two poles:
x = 0 and
x = 5.

User Dhruv Vemula
by
5.1k points