Answer:
I hope This will Help u.. Plz mark me as Brilliant please
Explanation:
Before you get started, take this readiness quiz.
Simplify: 
If you missed this problem, review (Figure).
Solve Equations with Constants on Both Sides
In all the equations we have solved so far, all the variable terms were on only one side of the equation with the constants on the other side. This does not happen all the time—so now we will learn to solve equations in which the variable terms, or constant terms, or both are on both sides of the equation.
Our strategy will involve choosing one side of the equation to be the “variable side”, and the other side of the equation to be the “constant side.” Then, we will use the Subtraction and Addition Properties of Equality to get all the variable terms together on one side of the equation and the constant terms together on the other side.
By doing this, we will transform the equation that began with variables and constants on both sides into the form  We already know how to solve equations of this form by using the Division or Multiplication Properties of Equality.
Solve: 
Solution
In this equation, the variable is found only on the left side. It makes sense to call the left side the “variable” side. Therefore, the right side will be the “constant” side. We will write the labels above the equation to help us remember what goes where.

Since the left side is the “”, or variable side, the 8 is out of place. We must “undo” adding 8 by subtracting 8, and to keep the equality we must subtract 8 from both sides.
Use the Subtraction Property of Equality.Simplify.Now all the variables are on the left and the constant on the right.
The equation looks like those you learned to solve earlier.Use the Division Property of Equality.Simplify.Check:Let .
Solve: 

Solve: 

Solve: 
Solution
Notice, the variable is only on the left side of the equation, so we will call this side the “variable” side, and the right side will be the “constant” side. Since the left side is the “variable” side, the 9 is out of place. It is subtracted from the , so to “undo” subtraction, add 9 to both sides. Remember, whatever you do to the left, you must do to the right.