Answer:
A. 0.3x2
Explanation:
Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Up
Vertex:
(
0
,
0
)
Focus:
(
0
,
0.8
¯
3
)
Axis of Symmetry:
x
=
0
Directrix:
y
=
−
0.8
¯
3
x
y
−
2
1.2
−
1
0.3
0
0
1
0.3
2
1.2
Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Down
Vertex:
(
0
,
0
)
Focus:
(
0
,
−
1
16
)
Axis of Symmetry:
x
=
0
Directrix:
y
=
1
16
x
y
−
2
−
16
−
1
−
4
0
0
1
−
4
2
−
16
Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Down
Vertex:
(
0
,
0
)
Focus:
(
0
,
−
5
16
)
Axis of Symmetry:
x
=
0
Directrix:
y
=
5
16
x
y
−
2
−
16
5
−
1
−
4
5
0
0
1
−
4
5
2
−
16
5
Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Up
Vertex:
(
0
,
0
)
Focus:
(
0
,
3
4
)
Axis of Symmetry:
x
=
0
Directrix:
y
=
−
3
4
x
y
−
2
4
3
−
1
1
3
0
0
1
1
3
3
3