184k views
5 votes
Please I need help with this!!!!!!!

Please I need help with this!!!!!!!-example-1
User BonCodigo
by
8.6k points

2 Answers

4 votes

1). Step 4:

x=5^{\frac{4}{3}}=(5^4)^{\frac{1}{3}}x=534=(54)31

x=\sqrt[3]{5^4}x=354 [Since, a^{\frac{1}{3}}=\sqrt[3]{a}a31=3a

x=\sqrt[3]{5\times 5\times 5\times 5}x=35×5×5×5

Step 5:

x=\sqrt[3]{(5)^3\times 5}x=3(5)3×5

x=\sqrt[3]{5^3}\times \sqrt[3]{5}x=353×35

2). He simplified the expression by removing exponents from the given expression.

3). Let the radical equation is,

(3x-1)^{\frac{1}{5}}=2(3x−1)51=2

Step 1:

(3x-1)^{\frac{1}{5}\times \frac{5}{1} }=2^{\frac{5}{1}}(3x−1)51×15=215

Step 2:

(3x-1)=2^5(3x−1)=25

Step 3:

3x=32+13x=32+1

Step 4:

x=11x=11

4). By substituting x=11x=11 in the original equation.

(3\times 11-1)^{\frac{1}{5}}=(32)^\frac{1}{5}(3×11−1)51=(32)51

=(2^5)^\frac{1}{5}=(25)51

=2=2

There is no extraneous solution.

User Krn
by
8.5k points
6 votes

Answer:

Explanation:

1). Step 4:


x=5^{(4)/(3)}=(5^4)^{(1)/(3)}


x=\sqrt[3]{5^4} [Since,
a^{(1)/(3)}=\sqrt[3]{a}]


x=\sqrt[3]{5* 5* 5* 5}

Step 5:


x=\sqrt[3]{(5)^3* 5}


x=\sqrt[3]{5^3}* \sqrt[3]{5}

2). He simplified the expression by removing exponents from the given expression.

3). Let the radical equation is,


(3x-1)^{(1)/(5)}=2

Step 1:


(3x-1)^{(1)/(5)* (5)/(1) }=2^{(5)/(1)}

Step 2:


(3x-1)=2^5

Step 3:


3x=32+1

Step 4:


x=11

4). By substituting
x=11 in the original equation.


(3* 11-1)^{(1)/(5)}=(32)^(1)/(5)


=(2^5)^(1)/(5)


=2

There is no extraneous solution.

User Robin McCorkell
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories