184k views
5 votes
Please I need help with this!!!!!!!

Please I need help with this!!!!!!!-example-1
User BonCodigo
by
4.7k points

2 Answers

4 votes

1). Step 4:

x=5^{\frac{4}{3}}=(5^4)^{\frac{1}{3}}x=534=(54)31

x=\sqrt[3]{5^4}x=354 [Since, a^{\frac{1}{3}}=\sqrt[3]{a}a31=3a

x=\sqrt[3]{5\times 5\times 5\times 5}x=35×5×5×5

Step 5:

x=\sqrt[3]{(5)^3\times 5}x=3(5)3×5

x=\sqrt[3]{5^3}\times \sqrt[3]{5}x=353×35

2). He simplified the expression by removing exponents from the given expression.

3). Let the radical equation is,

(3x-1)^{\frac{1}{5}}=2(3x−1)51=2

Step 1:

(3x-1)^{\frac{1}{5}\times \frac{5}{1} }=2^{\frac{5}{1}}(3x−1)51×15=215

Step 2:

(3x-1)=2^5(3x−1)=25

Step 3:

3x=32+13x=32+1

Step 4:

x=11x=11

4). By substituting x=11x=11 in the original equation.

(3\times 11-1)^{\frac{1}{5}}=(32)^\frac{1}{5}(3×11−1)51=(32)51

=(2^5)^\frac{1}{5}=(25)51

=2=2

There is no extraneous solution.

User Krn
by
4.3k points
6 votes

Answer:

Explanation:

1). Step 4:


x=5^{(4)/(3)}=(5^4)^{(1)/(3)}


x=\sqrt[3]{5^4} [Since,
a^{(1)/(3)}=\sqrt[3]{a}]


x=\sqrt[3]{5* 5* 5* 5}

Step 5:


x=\sqrt[3]{(5)^3* 5}


x=\sqrt[3]{5^3}* \sqrt[3]{5}

2). He simplified the expression by removing exponents from the given expression.

3). Let the radical equation is,


(3x-1)^{(1)/(5)}=2

Step 1:


(3x-1)^{(1)/(5)* (5)/(1) }=2^{(5)/(1)}

Step 2:


(3x-1)=2^5

Step 3:


3x=32+1

Step 4:


x=11

4). By substituting
x=11 in the original equation.


(3* 11-1)^{(1)/(5)}=(32)^(1)/(5)


=(2^5)^(1)/(5)


=2

There is no extraneous solution.

User Robin McCorkell
by
4.0k points