1). Step 4:
x=5^{\frac{4}{3}}=(5^4)^{\frac{1}{3}}x=534=(54)31
x=\sqrt[3]{5^4}x=354 [Since, a^{\frac{1}{3}}=\sqrt[3]{a}a31=3a
x=\sqrt[3]{5\times 5\times 5\times 5}x=35×5×5×5
Step 5:
x=\sqrt[3]{(5)^3\times 5}x=3(5)3×5
x=\sqrt[3]{5^3}\times \sqrt[3]{5}x=353×35
2). He simplified the expression by removing exponents from the given expression.
3). Let the radical equation is,
(3x-1)^{\frac{1}{5}}=2(3x−1)51=2
Step 1:
(3x-1)^{\frac{1}{5}\times \frac{5}{1} }=2^{\frac{5}{1}}(3x−1)51×15=215
Step 2:
(3x-1)=2^5(3x−1)=25
Step 3:
3x=32+13x=32+1
Step 4:
x=11x=11
4). By substituting x=11x=11 in the original equation.
(3\times 11-1)^{\frac{1}{5}}=(32)^\frac{1}{5}(3×11−1)51=(32)51
=(2^5)^\frac{1}{5}=(25)51
=2=2
There is no extraneous solution.