160k views
3 votes
Find the slope of the line through (2. – 3) and (5. – 3).

User Yoonjung
by
3.9k points

2 Answers

12 votes

Answer:

Step-by-step explanation: Explanation:

You need to use the formula for slope:

m

=

y

2

y

1

x

2

x

1

m

represents the slope.

You need to assign each coordinate, but it must correspond.

For example:

In the coordinate

(

2

,

3

)

,

2

is

x

1

and

3

is

y

1

.

In the coordinate

(

5

,

2

)

,

5

is

x

2

and

2

is

y

2

.

Now you plug this in.

m

=

2

(

3

)

5

2

After this, you need to simplify

m

=

5

3

This may be wrong so double check.

User Hasn
by
4.4k points
10 votes

let's solve:-


the \: formula \:to \: find   \: slope \: \bold \green{m = (y2 - y1)/(x2 -x1)} \\ \\ \sf{(where \: m \:  represents \: the \: slope.)} \\ \\

_________________________

Here:-


\bold \red{\boxed{y2 = - 3} }\\ \bold \red{\boxed{y1 = - 3} }\\ \bold \red{\boxed{x2 = 5}} \: \: \: \\ \bold \red{\boxed{ x1 = 2} }\: \: \:


\large\boxed {\sf{↬putting \: values \: according \: to \: formula}}


\large \bold{↬m = ( - 3 - ( - 3))/(5 - 2)} \\ \\\large \bold{↬m = ( - 3 + 3)/(5 - 2) } \: \: \: \: \: \: \: \\ \\ \large \bold{↬m = (0)/(3) } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \large \bold\blue{↬m = 0} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:

_________________________

User Shuwn Yuan Tee
by
4.5k points