209k views
2 votes
Prove the following
\bold{algebraically}:


\displaystyle \frac{ {29}^(3) + {29}^(2) + 30 }{ {29}^(4) - 1} = (1)/(28)
​​

User TheDrot
by
4.5k points

2 Answers

2 votes

Answer:

see below

Explanation:

we are given


\displaystyle \frac{ {29}^(3) + {29}^(2) + 30 }{ {29}^(4) - 1} = (1)/(28)

we want to prove it algebraically

to do so rewrite 30:


\displaystyle \frac{ {29}^(3) + {29}^(2) + 29 + 1}{ {29}^(4) - 1} \stackrel{ ? }{= }(1)/(28)

let 29 be a thus substitute:


\displaystyle \frac{ {a}^(3) + {a}^(2) + a + 1}{ {a}^(4) - 1} \stackrel{ ? }{= }(1)/(28)

factor the denominator:


\rm\displaystyle \frac{ {a}^(3) + {a}^(2) + a + 1}{ ({a}^(2) + 1) (a- 1)(a + 1)} \stackrel{ ? }{= }(1)/(28)

Factor out a²:


\rm\displaystyle \frac{ {a}^(2) ({a}^{} + 1)+ a + 1}{ ({a}^(2) + 1) (a- 1)(a + 1)} \stackrel{ ? }{= }(1)/(28)

factor out 1:


\rm\displaystyle \frac{ {a}^(2) ({a}^{} + 1)+1( a + 1)}{ ({a}^(2) + 1) (a- 1)(a + 1)} \stackrel{ ? }{= }(1)/(28)

group:


\rm\displaystyle \frac{ ({a}^(2) +1)( a + 1)}{ ({a}^(2) + 1) (a + 1)(a - 1)} \stackrel{ ? }{= }(1)/(28)

reduce fraction:


\rm\displaystyle \frac{ \cancel{({a}^(2) +1)( a + 1)}}{ \cancel{({a}^(2) + 1) (a + 1)}(a - 1)} \stackrel{ ? }{= }(1)/(28)


\displaystyle (1)/(a - 1) \stackrel {?}{ = } (1)/(28)

substitute back:


\displaystyle (1)/(29 - 1) \stackrel {?}{ = } (1)/(28)

simplify substraction:


\displaystyle (1)/(28) \stackrel { \checkmark}{ = } (1)/(28)

hence Proven

User Anirvan
by
4.4k points
4 votes

Answer:

Solution given:

L.H.S.


\displaystyle \frac{ {29}^(3) + {29}^(2) + 29+1 }{ {29}^(4) - 1}

Let 29 be x.


\displaystyle \frac{ {x}^(3) + {x}^(2) + x+1 }{ {x}^(4) - 1}


\displaystyle \frac{ {x}^(2) (x+ 1) +1( x+1 )}{ ({x}^(2) )²- 1²}


\displaystyle ( (x²+1)( x+1 ))/( (x²+1)(x²-1²))


\displaystyle ( (x²+1)( x+1 ))/( (x²+1)(x+1)(x-1))


\displaystyle (1)/(x-1)

substituting value.


\displaystyle (1)/(29-1)


\displaystyle (1)/(28)

R.H.S.

proved.

User Olsonist
by
3.6k points