Answer:
![y = (x - 3)^2 - 12](https://img.qammunity.org/2022/formulas/mathematics/high-school/9jx7579qtk3ys7h96wjfym39mu7ml3utiv.png)
![(3,-12)](https://img.qammunity.org/2022/formulas/mathematics/high-school/iopwts9mzmsggj62j4yogxuo5rgzxx3oco.png)
Explanation:
Given
![y = x^2 - 6x - 3](https://img.qammunity.org/2022/formulas/mathematics/high-school/1bf16p49fuch9ebaxjxih4po3gvzostx94.png)
Solving (a): In vertex form
The vertex form of an equation is:
![y = a(x - h)^2 + k](https://img.qammunity.org/2022/formulas/mathematics/college/a4ohmj341p6jyoe737jwo7mmb8yxfwproc.png)
To do this, we make use of completing the square method.
We have:
![y = x^2 - 6x - 3](https://img.qammunity.org/2022/formulas/mathematics/high-school/1bf16p49fuch9ebaxjxih4po3gvzostx94.png)
------------------------------------------------------------------
Take the coefficient of x (i.e. -6)
Divide by 2; -6/2 = -3
Square it: (-3)^2 = 9
Add and subtract the result to the equation
------------------------------------------------------------------
![y = x^2 - 6x - 3](https://img.qammunity.org/2022/formulas/mathematics/high-school/1bf16p49fuch9ebaxjxih4po3gvzostx94.png)
![y = x^2 - 6x + 9 - 9 - 3](https://img.qammunity.org/2022/formulas/mathematics/high-school/knw50bd1eufkwwbnti4vcq4zil6ppvge9j.png)
![y = x^2 - 6x + 9 - 12](https://img.qammunity.org/2022/formulas/mathematics/high-school/y8mt4jnb5etlg88z98qz1835gl04bx5yc7.png)
Factorize
![x^2 - 6x + 9](https://img.qammunity.org/2022/formulas/mathematics/high-school/hqlwo6t3imr3ihx2pyf9f5x0jl0qvb2c5x.png)
![y = x^2 - 3x-3x + 9 - 12](https://img.qammunity.org/2022/formulas/mathematics/high-school/ebc4sgyav48ko1sz8g9nz9hojjfpgwmcoy.png)
![y = x(x - 3)-3(x - 3) - 12](https://img.qammunity.org/2022/formulas/mathematics/high-school/co3uudgnkaov9i4akb6cu8ksdg4r5b70cb.png)
Factor out x - 3
![y = (x - 3)(x - 3) - 12](https://img.qammunity.org/2022/formulas/mathematics/high-school/26l1176vf1k2k4k1rfoci7mlrrsy8rkqr7.png)
Express as squares
![y = (x - 3)^2 - 12](https://img.qammunity.org/2022/formulas/mathematics/high-school/9jx7579qtk3ys7h96wjfym39mu7ml3utiv.png)
Hence, the vertex form of
is:
![y = (x - 3)^2 - 12](https://img.qammunity.org/2022/formulas/mathematics/high-school/9jx7579qtk3ys7h96wjfym39mu7ml3utiv.png)
Solving (b): State the coordinates of the vertex.
In
; the vertex is: (h,k)
The vertex of
will be
![(3,-12)](https://img.qammunity.org/2022/formulas/mathematics/high-school/iopwts9mzmsggj62j4yogxuo5rgzxx3oco.png)