59.1k views
4 votes
Geometry: HELPPPP PLSS!!

Geometry: HELPPPP PLSS!!-example-1
User Udit
by
5.0k points

1 Answer

2 votes

Answer:

A, C and G

Explanation:


\boxed{\begin{minipage}{9.4 cm}\underline{Trigonometric ratios} \\\\$\sf \sin(\theta)=(O)/(H)\quad\cos(\theta)=(A)/(H)\quad\tan(\theta)=(O)/(A)$\\\\where:\\ \phantom{ww}$\bullet$ $\theta$ is the angle. \\ \phantom{ww}$\bullet$ $\sf O$ is the side opposite the angle. \\\phantom{ww}$\bullet$ $\sf A$ is the side adjacent the angle. \\\phantom{ww}$\bullet$ $\sf H$ is the hypotenuse (the side opposite the right angle). \\\end{minipage}}

From inspection of the given right triangle:

  • θ = 25°
  • O = a
  • A = b
  • H = c

Substitute the values into the trigonometric ratios:


\implies \sf \sin(25^(\circ))=(a)/(c)


\implies \sf \cos(25^(\circ))=(b)/(c)


\implies \sf \tan(25^(\circ))=(a)/(b)


\boxed{\begin{minipage}{4 cm}\underline{Trigonometric values} \\\\$\sin(90^(\circ)- \theta)=\cos \theta$\\$\cos(90^(\circ)- \theta)=\sin \theta$\\$\tan(90^(\circ)- \theta)=\cot \theta$\\\end{minipage}}

Using trigonometric values and the calculated trigonometric ratios:


\begin{aligned} \sf \sin(90^(\circ)- 25^(\circ))&=\sf \cos (25^(\circ))\\\implies \sf \sin(65^(\circ)) &=\sf (b)/(c)\end{aligned}


\begin{aligned} \sf \cos(90^(\circ)- 25^(\circ))&= \sf \sin(25^(\circ))\\\implies \sf \cos(65^(\circ)) &=\sf (a)/(c)\end{aligned}


\begin{aligned}\sf \tan(90^(\circ)- 25^(\circ))&= \sf \cot(25^(\circ))\\\implies \sf \tan(65^(\circ)) &= \sf (1)/(\tan(25^(\circ)))\\\implies \sf \tan(65^(\circ)) & = \sf (b)/(a)\end{aligned}

Therefore, the true equations are:


\sf A: \quad \cos(25^(\circ))=(b)/(c)


\sf C: \quad \sin(65^(\circ))=(b)/(c)


\sf G: \quad \sin(25^(\circ))=\cos(65^(\circ))

User Asaka
by
4.7k points