59.1k views
4 votes
Geometry: HELPPPP PLSS!!

Geometry: HELPPPP PLSS!!-example-1
User Udit
by
8.7k points

1 Answer

2 votes

Answer:

A, C and G

Explanation:


\boxed{\begin{minipage}{9.4 cm}\underline{Trigonometric ratios} \\\\$\sf \sin(\theta)=(O)/(H)\quad\cos(\theta)=(A)/(H)\quad\tan(\theta)=(O)/(A)$\\\\where:\\ \phantom{ww}$\bullet$ $\theta$ is the angle. \\ \phantom{ww}$\bullet$ $\sf O$ is the side opposite the angle. \\\phantom{ww}$\bullet$ $\sf A$ is the side adjacent the angle. \\\phantom{ww}$\bullet$ $\sf H$ is the hypotenuse (the side opposite the right angle). \\\end{minipage}}

From inspection of the given right triangle:

  • θ = 25°
  • O = a
  • A = b
  • H = c

Substitute the values into the trigonometric ratios:


\implies \sf \sin(25^(\circ))=(a)/(c)


\implies \sf \cos(25^(\circ))=(b)/(c)


\implies \sf \tan(25^(\circ))=(a)/(b)


\boxed{\begin{minipage}{4 cm}\underline{Trigonometric values} \\\\$\sin(90^(\circ)- \theta)=\cos \theta$\\$\cos(90^(\circ)- \theta)=\sin \theta$\\$\tan(90^(\circ)- \theta)=\cot \theta$\\\end{minipage}}

Using trigonometric values and the calculated trigonometric ratios:


\begin{aligned} \sf \sin(90^(\circ)- 25^(\circ))&=\sf \cos (25^(\circ))\\\implies \sf \sin(65^(\circ)) &=\sf (b)/(c)\end{aligned}


\begin{aligned} \sf \cos(90^(\circ)- 25^(\circ))&= \sf \sin(25^(\circ))\\\implies \sf \cos(65^(\circ)) &=\sf (a)/(c)\end{aligned}


\begin{aligned}\sf \tan(90^(\circ)- 25^(\circ))&= \sf \cot(25^(\circ))\\\implies \sf \tan(65^(\circ)) &= \sf (1)/(\tan(25^(\circ)))\\\implies \sf \tan(65^(\circ)) & = \sf (b)/(a)\end{aligned}

Therefore, the true equations are:


\sf A: \quad \cos(25^(\circ))=(b)/(c)


\sf C: \quad \sin(65^(\circ))=(b)/(c)


\sf G: \quad \sin(25^(\circ))=\cos(65^(\circ))

User Asaka
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories