182k views
4 votes
Find the slope of the line that passes through the
points (-3,5) and (3, 1).

2 Answers

0 votes

Answer:

Slope = -2/3

Explanation:

Slope = change in y / change in x OR the rise/run

Slope = (5 - 1)/(-3 -3)

Slope = 4/-6

Slope = -2/3

Hope this helped!

User Jaxan
by
4.3k points
6 votes

Solution :

As we know that,


  • \boxed{\red{\bf{Slope \: (m) \: = \: (y_(2) \: - \: y_(1) )/(x_(2) \: - \:x_(1)) }}} \: \bigstar

We have :


  • \sf{x_1 \: = \: -3}

  • \sf{y_1 \: = \: 5}

  • \sf{x_2 \: = \: 3}

  • \sf{y_2 \: = \: 1}

Substituting the values :


\longmapsto \: \sf{Slope \: (m) \: = \: (1 \: - \: 5 )/(3 \: - \: ( - 3)) } \\ \\ \longmapsto \: \sf{Slope \: (m) \: = \: (1 \: - \: 5 )/(3 \: + \: 3) } \\ \\ \longmapsto \: \sf{Slope \: (m) \: = \: ( - 4)/(6) } \\ \\ \longmapsto \: \sf{Slope \: (m) \: = \: \cancel( - 4)/(6) } \\ \\ \longmapsto \: \bf{ \orange{Slope \: (m) \: = \: ( - 2)/(3) }}

User Dmitrii Lobanov
by
4.3k points