114k views
0 votes
Find the side length x

Find the side length x-example-1
User Cbeer
by
7.9k points

2 Answers

5 votes


\huge\bold{To\:find:}

The length of the hypotenuse ''
x".


\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}


\sf\purple{The\:length\:of\:the\:hypotenuse \:


\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\orange{:}}}}}

Using Pythagoras theorem, we have


( {hypotenuse})^(2) = ( {perpendicular})^(2) + ( {base})^(2) \\ ⇢ {x}^(2) = {6}^(2) + {8}^(2) \\ ⇢ {x}^(2) = 36 + 64 \\ ⇢ {x}^(2) = 100 \\ ⇢ x = √(100) \\ ⇢x = √(10 * 10) \\ ⇢x = \sqrt{ ({10})^(2) } \\ ⇢x = 10


\sf\blue{Therefore,\:the\:length\:of\:the\:hypotenuse\:is\:10.}


\huge\bold{To\:verify :}


{x}^(2) = {6}^(2) + {8}^(2) \\⇝ ({10})^(2) = 36 + 64 \\ ⇝10 * 10 = 100 \\ ⇝100 = 100 \\ ⇝L.H.S.=R. H. S

Hence verified. ✔


\circ \: \: { \underline{ \boxed{ \sf{ \color{green}{Happy\:learning.}}}}}∘

Find the side length x-example-1
User Nrennie
by
8.2k points
4 votes

Answer:

x = 10

Explanation:

8² + 6² = x²

64 + 36 = x

64 + 36 = 100

√100 = 10

User Tyulpan Tyulpan
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories