114k views
0 votes
Find the side length x

Find the side length x-example-1
User Cbeer
by
4.2k points

2 Answers

5 votes


\huge\bold{To\:find:}

The length of the hypotenuse ''
x".


\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}


\sf\purple{The\:length\:of\:the\:hypotenuse \:


\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\orange{:}}}}}

Using Pythagoras theorem, we have


( {hypotenuse})^(2) = ( {perpendicular})^(2) + ( {base})^(2) \\ ⇢ {x}^(2) = {6}^(2) + {8}^(2) \\ ⇢ {x}^(2) = 36 + 64 \\ ⇢ {x}^(2) = 100 \\ ⇢ x = √(100) \\ ⇢x = √(10 * 10) \\ ⇢x = \sqrt{ ({10})^(2) } \\ ⇢x = 10


\sf\blue{Therefore,\:the\:length\:of\:the\:hypotenuse\:is\:10.}


\huge\bold{To\:verify :}


{x}^(2) = {6}^(2) + {8}^(2) \\⇝ ({10})^(2) = 36 + 64 \\ ⇝10 * 10 = 100 \\ ⇝100 = 100 \\ ⇝L.H.S.=R. H. S

Hence verified. ✔


\circ \: \: { \underline{ \boxed{ \sf{ \color{green}{Happy\:learning.}}}}}∘

Find the side length x-example-1
User Nrennie
by
3.9k points
4 votes

Answer:

x = 10

Explanation:

8² + 6² = x²

64 + 36 = x

64 + 36 = 100

√100 = 10

User Tyulpan Tyulpan
by
4.5k points