Answer:
- (12, 12, 156) and (9, 9, 162)
Explanation:
Since AB = AC and the triangle is isosceles:
- ∠ABC ≅ ∠ACB
- 3x² - 2x + 4 = 9x - 6
- 3x² - 11x + 10 = 0
- x = (11 ± √(121 - 4*3*10)/6
- x = (11 ± 1) / 6
- x = 2, x = 10/6
The angles:
- m∠B = m∠C = 9*2 - 6 = 12°
- m∠A = 180 - 2(12) = 156°
- m∠B = m∠C = 9(10/6) - 6 = 9°
- m∠A = 180 - 2(9) = 162°