Answer:
(a) The population in 2000 is 450
(b) 15% decreases each year
Explanation:
Given
--- since 2000
![P \to Population](https://img.qammunity.org/2022/formulas/mathematics/high-school/j7z386mrzk8b3qv5muk7q9agbw07hyx7ts.png)
![t \to years](https://img.qammunity.org/2022/formulas/mathematics/high-school/lgioqmwg1jjdjdg5wf0s2b794ig7j7gugn.png)
Solving (a): The population in 2000
First calculate t
--- years since 200
![t = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/lx3ip2zu3pkxpa4xz10h4293l429vmrzwm.png)
So, we have:
![P = 450(0.85)^t](https://img.qammunity.org/2022/formulas/mathematics/high-school/kyzmrtve3qxqd2mw04312g5puaqlsowct2.png)
![P = 450 * 0.85^0](https://img.qammunity.org/2022/formulas/mathematics/high-school/6tw92sjnj9gu2qks9yhvtz5e1f6k9s1wt6.png)
![P = 450 * 1](https://img.qammunity.org/2022/formulas/mathematics/high-school/v7by88xtehezu2rnuz0w9ghogrtjcck2ep.png)
![P = 450](https://img.qammunity.org/2022/formulas/mathematics/high-school/smo72kuh8u9fk4mxjgxkf8v3w0dl6qapsb.png)
Solving (b): Rate of population decrease
A function that decreases is represented as:
![P(t) = a(1 - r)^t](https://img.qammunity.org/2022/formulas/mathematics/high-school/t95ggmy6jgxxm6rieue7qiirybuouppplf.png)
Where
rate of decrement
Compare
and
![P = 450(0.85)^t](https://img.qammunity.org/2022/formulas/mathematics/high-school/kyzmrtve3qxqd2mw04312g5puaqlsowct2.png)
![1- r = 0.85](https://img.qammunity.org/2022/formulas/mathematics/high-school/indup2vambtq7nx93ajpe7ota4m9h5rnw7.png)
Collect like terms
![r = 1 - 0.85](https://img.qammunity.org/2022/formulas/mathematics/high-school/vljo07v0fw8f9ighr0292cxxt1jzlxavxs.png)
![r = 0.15](https://img.qammunity.org/2022/formulas/mathematics/college/m9p7rq8b45t61tljx4rnp4f4dlcdnz5710.png)
Express as percentage
![r = 15\%](https://img.qammunity.org/2022/formulas/mathematics/high-school/vs1mstw4ckoc0qhw07fywh3ueh1jmowdch.png)