48.0k views
2 votes
Consider the following functions. (See attachment)
Find the area of the region.

Consider the following functions. (See attachment) Find the area of the region.-example-1

1 Answer

4 votes

Answer:

Area:
\displaystyle (1)/(2)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Functions
  • Function Notation
  • Graphing Functions
  • Exponential Rule [Root Rewrite]:
    \displaystyle \sqrt[n]{x} = x^{(1)/(n)}

Calculus

Derivatives

Derivative Notation

Derivative of a constant is 0

Area - Integrals

  • Area under a curve
  • Area between 2 curves

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Area of a Region Formula:
\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Explanation:

Step 1: Define

Identify functions


\displaystyle f(x) = \sqrt[3]{x - 9}


\displaystyle g(x) = x - 9

Step 2: Identify Info

Graph the functions - See Attachment

[1st Integral] Bounds: [8, 9], g(x) top function/f(x) bottom function

[2nd Integral] Bounds: [9, 10], f(x) top function/g(x) bottom function

Step 3: Find Area Pt. 1

  1. Set up integrals [Area of a Region Formula]:
    \displaystyle A = \int\limits^9_8 {[(x - 9) - \sqrt[3]{x - 9}]} \, dx + \int\limits^(10)_9 {[\sqrt[3]{x - 9} - (x - 9)]} \, dx
  2. Rewrite integrals [Integration Property - Addition/Subtraction]:
    \displaystyle A = \int\limits^9_8 {(x - 9)} \, dx - \int\limits^9_8 {\sqrt[3]{x - 9}} \, dx + \int\limits^(10)_9 {\sqrt[3]{x - 9}} \, dx - \int\limits^(10)_9 {(x - 9)} \, dx
  3. Integrate [Integration Rule - Reverse Power Rule]:
    \displaystyle A = (x^2 - 9x) \bigg| \limits^9_8 - \int\limits^9_8 {\sqrt[3]{x - 9}} \, dx + \int\limits^(10)_9 {\sqrt[3]{x - 9}} \, dx - (x^2 - 9x) \bigg| \limits^9_8
  4. Evaluate [Integration Rule - FTC 1]:
    \displaystyle A = (-1)/(2) - \int\limits^9_8 {\sqrt[3]{x - 9}} \, dx + \int\limits^(10)_9 {\sqrt[3]{x - 9}} \, dx - (1)/(2)
  5. Subtract:
    \displaystyle A = -\int\limits^9_8 {\sqrt[3]{x - 9}} \, dx + \int\limits^(10)_9 {\sqrt[3]{x - 9}} \, dx - 1
  6. Rewrite [Exponential Rule - Root Rewrite]:
    \displaystyle A = -\int\limits^9_8 {(x - 9)^{(1)/(3)}} \, dx + \int\limits^(10)_9 {(x - 9)^{(1)/(3)}} \, dx - 1

Step 4: Identify Variables

Identify variables for u-substitution.

u = x - 9

du = dx

Step 5: Find Area Pt. 2

  1. [Integrals] U-Substitution:
    \displaystyle A = -\int\limits^0_(-1) {u^{(1)/(3)}} \, du + \int\limits^1_0 {u^{(1)/(3)}} \, du - 1
  2. [Integrals] Integrate [Integration Rule - Reverse Power Rule]:
    \displaystyle A = -((3)/(4)u^{(4)/(3)}) \bigg| \limits^0_(-1) + ((3)/(4)u^{(4)/(3)}) \bigg| \limits^1_0 - 1
  3. Evaluate [Integration Rule - FTC 1]:
    \displaystyle A = -((-3)/(4)) + (3)/(4) - 1
  4. Simplify:
    \displaystyle A = (1)/(2)

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Integrals - Area between 2 curves

Book: College Calculus 10e

Consider the following functions. (See attachment) Find the area of the region.-example-1
User Gen Tan
by
6.1k points