48.1k views
2 votes
Consider the following functions. (See attachment)
Find the area of the region.

Consider the following functions. (See attachment) Find the area of the region.-example-1

1 Answer

4 votes

Answer:

Area:
\displaystyle (1)/(2)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Functions
  • Function Notation
  • Graphing Functions
  • Exponential Rule [Root Rewrite]:
    \displaystyle \sqrt[n]{x} = x^{(1)/(n)}

Calculus

Derivatives

Derivative Notation

Derivative of a constant is 0

Area - Integrals

  • Area under a curve
  • Area between 2 curves

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Area of a Region Formula:
\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Explanation:

Step 1: Define

Identify functions


\displaystyle f(x) = \sqrt[3]{x - 9}


\displaystyle g(x) = x - 9

Step 2: Identify Info

Graph the functions - See Attachment

[1st Integral] Bounds: [8, 9], g(x) top function/f(x) bottom function

[2nd Integral] Bounds: [9, 10], f(x) top function/g(x) bottom function

Step 3: Find Area Pt. 1

  1. Set up integrals [Area of a Region Formula]:
    \displaystyle A = \int\limits^9_8 {[(x - 9) - \sqrt[3]{x - 9}]} \, dx + \int\limits^(10)_9 {[\sqrt[3]{x - 9} - (x - 9)]} \, dx
  2. Rewrite integrals [Integration Property - Addition/Subtraction]:
    \displaystyle A = \int\limits^9_8 {(x - 9)} \, dx - \int\limits^9_8 {\sqrt[3]{x - 9}} \, dx + \int\limits^(10)_9 {\sqrt[3]{x - 9}} \, dx - \int\limits^(10)_9 {(x - 9)} \, dx
  3. Integrate [Integration Rule - Reverse Power Rule]:
    \displaystyle A = (x^2 - 9x) \bigg| \limits^9_8 - \int\limits^9_8 {\sqrt[3]{x - 9}} \, dx + \int\limits^(10)_9 {\sqrt[3]{x - 9}} \, dx - (x^2 - 9x) \bigg| \limits^9_8
  4. Evaluate [Integration Rule - FTC 1]:
    \displaystyle A = (-1)/(2) - \int\limits^9_8 {\sqrt[3]{x - 9}} \, dx + \int\limits^(10)_9 {\sqrt[3]{x - 9}} \, dx - (1)/(2)
  5. Subtract:
    \displaystyle A = -\int\limits^9_8 {\sqrt[3]{x - 9}} \, dx + \int\limits^(10)_9 {\sqrt[3]{x - 9}} \, dx - 1
  6. Rewrite [Exponential Rule - Root Rewrite]:
    \displaystyle A = -\int\limits^9_8 {(x - 9)^{(1)/(3)}} \, dx + \int\limits^(10)_9 {(x - 9)^{(1)/(3)}} \, dx - 1

Step 4: Identify Variables

Identify variables for u-substitution.

u = x - 9

du = dx

Step 5: Find Area Pt. 2

  1. [Integrals] U-Substitution:
    \displaystyle A = -\int\limits^0_(-1) {u^{(1)/(3)}} \, du + \int\limits^1_0 {u^{(1)/(3)}} \, du - 1
  2. [Integrals] Integrate [Integration Rule - Reverse Power Rule]:
    \displaystyle A = -((3)/(4)u^{(4)/(3)}) \bigg| \limits^0_(-1) + ((3)/(4)u^{(4)/(3)}) \bigg| \limits^1_0 - 1
  3. Evaluate [Integration Rule - FTC 1]:
    \displaystyle A = -((-3)/(4)) + (3)/(4) - 1
  4. Simplify:
    \displaystyle A = (1)/(2)

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Integrals - Area between 2 curves

Book: College Calculus 10e

Consider the following functions. (See attachment) Find the area of the region.-example-1
User Gen Tan
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories