Answer:
Area:

General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra I
- Functions
- Function Notation
- Graphing Functions
- Exponential Rule [Root Rewrite]:
![\displaystyle \sqrt[n]{x} = x^{(1)/(n)}](https://img.qammunity.org/2022/formulas/mathematics/college/yqpyvbuov0tgbjo8vla0qsqp67pafn2fr7.png)
Calculus
Derivatives
Derivative Notation
Derivative of a constant is 0
Area - Integrals
- Area under a curve
- Area between 2 curves
Integration Rule [Reverse Power Rule]:
Integration Rule [Fundamental Theorem of Calculus 1]:
Integration Property [Addition/Subtraction]:
![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/r5yh324r81plt97j3zrr5qi2xxczxlqi34.png)
U-Substitution
Area of a Region Formula:
![\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx](https://img.qammunity.org/2022/formulas/mathematics/college/uij08sp4x97gp23utcdwranet4linkrd6u.png)
Explanation:
Step 1: Define
Identify functions
![\displaystyle f(x) = \sqrt[3]{x - 9}](https://img.qammunity.org/2022/formulas/mathematics/high-school/xbrdxysudx2jun42pq0ga68vhfe2maueso.png)

Step 2: Identify Info
Graph the functions - See Attachment
[1st Integral] Bounds: [8, 9], g(x) top function/f(x) bottom function
[2nd Integral] Bounds: [9, 10], f(x) top function/g(x) bottom function
Step 3: Find Area Pt. 1
- Set up integrals [Area of a Region Formula]:
![\displaystyle A = \int\limits^9_8 {[(x - 9) - \sqrt[3]{x - 9}]} \, dx + \int\limits^(10)_9 {[\sqrt[3]{x - 9} - (x - 9)]} \, dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/cdppx6a5m1pfprxgmfytm5m8ycy5i9l4k6.png)
- Rewrite integrals [Integration Property - Addition/Subtraction]:
![\displaystyle A = \int\limits^9_8 {(x - 9)} \, dx - \int\limits^9_8 {\sqrt[3]{x - 9}} \, dx + \int\limits^(10)_9 {\sqrt[3]{x - 9}} \, dx - \int\limits^(10)_9 {(x - 9)} \, dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/er52miz4aw5tsyqf7bpdozm7eoz199erb5.png)
- Integrate [Integration Rule - Reverse Power Rule]:
![\displaystyle A = (x^2 - 9x) \bigg| \limits^9_8 - \int\limits^9_8 {\sqrt[3]{x - 9}} \, dx + \int\limits^(10)_9 {\sqrt[3]{x - 9}} \, dx - (x^2 - 9x) \bigg| \limits^9_8](https://img.qammunity.org/2022/formulas/mathematics/high-school/idvx6ns5t4qp1ejl69tmpznhxgaiji9gx9.png)
- Evaluate [Integration Rule - FTC 1]:
![\displaystyle A = (-1)/(2) - \int\limits^9_8 {\sqrt[3]{x - 9}} \, dx + \int\limits^(10)_9 {\sqrt[3]{x - 9}} \, dx - (1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/qws5u7nlrs2dfjkwa4mqsjse4a1mobcchf.png)
- Subtract:
![\displaystyle A = -\int\limits^9_8 {\sqrt[3]{x - 9}} \, dx + \int\limits^(10)_9 {\sqrt[3]{x - 9}} \, dx - 1](https://img.qammunity.org/2022/formulas/mathematics/high-school/keeh2dyava1sr0sznt47isxzb9x2v9u7xv.png)
- Rewrite [Exponential Rule - Root Rewrite]:

Step 4: Identify Variables
Identify variables for u-substitution.
u = x - 9
du = dx
Step 5: Find Area Pt. 2
- [Integrals] U-Substitution:

- [Integrals] Integrate [Integration Rule - Reverse Power Rule]:

- Evaluate [Integration Rule - FTC 1]:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Integrals - Area between 2 curves
Book: College Calculus 10e