Answer:
![\displaystyle \left( - (2)/(15) , (286)/(675) \right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/pojkt8n3vuylnxx84pljrlrmml7ilvh6zl.png)
Explanation:
to figure out the infection point
take derivative both sides:
![\displaystyle f'(x) = (d)/(dx) {5x}^(3) + 2 {x}^(2) - 3x](https://img.qammunity.org/2022/formulas/mathematics/high-school/n5unr0xb3qdcq8o2n6r6ipjrdxxg7drdl8.png)
By sum derivation rule we acquire:
![\displaystyle \rm f'(x) = (d)/(dx) {5x}^(3) + (d)/(dx) 2 {x}^(2) - (d)/(dx) 3x](https://img.qammunity.org/2022/formulas/mathematics/high-school/c7xjptb76ggpdgcy1yvl9b0awqtqam0jns.png)
apply exponent derivation rule which yields:
![\displaystyle f'(x) = {15x}^(2) + 4{x}^{} - 3](https://img.qammunity.org/2022/formulas/mathematics/high-school/rkp6ie0tx40qu5339ar2raq7lr2zj816t9.png)
take derivative in both sides once again which yields:
![\rm\displaystyle f''(x) = (d)/(dx) {15x}^(2) + (d)/(dx) 4{x}^{} - (d)/(dx) 3](https://img.qammunity.org/2022/formulas/mathematics/high-school/4l2tdaciotc6fcpyw99f3i5jn2imnsdjs1.png)
remember that, derivative of a constant is always 0 so,
![\rm\displaystyle f''(x) = (d)/(dx) {15x}^(2) + (d)/(dx) 4{x}^{} - 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/vmn14o5j7zjfby7pr94r9xzf9pqxmmdpm1.png)
by exponent derivation rule we acquire:
![\rm\displaystyle f''(x) = {30x} + 4{}^{}](https://img.qammunity.org/2022/formulas/mathematics/high-school/od2x0uqwtouqruvzc78c3vvofmjr4jczk1.png)
substitute f''(x) to 0 figure out the x coordinate of the inflection point:
![\rm\displaystyle {30x} + 4{}^{} = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/ab1lgml0zwkitxu0iv8zp7snwe1vsgrtag.png)
cancel 4 from both sides:
![\rm\displaystyle {30x} = - 4](https://img.qammunity.org/2022/formulas/mathematics/high-school/isw8856772085v28ti30vjd4tl0a91tm3c.png)
divide both sides by 30:
![\rm\displaystyle {x} = - (2)/(15)](https://img.qammunity.org/2022/formulas/mathematics/high-school/o6wxphwclt321ql4cbnmfkv5k7e1zr78hb.png)
now plugin the value of x to the given function to figure out the y coordinate of the inflection point:
![\rm \displaystyle f(x) = {5 \left( - (2)/(15) \right) }^(3) + 2 {\left( - (2)/(15) \right) }^(2) - 3 \left( - (2)/(15) \right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/v5quqton44wgei2821cmbc8p6k0gld5zcx.png)
By simplifying we acquire:
![\displaystyle f(x) = (286)/(675)](https://img.qammunity.org/2022/formulas/mathematics/high-school/8efe2j2nmyahq3zi0azo8dsmdw9ufrdcyg.png)
hence,
the coordinates of inflection point are
![\displaystyle \left( - (2)/(15) , (286)/(675) \right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/pojkt8n3vuylnxx84pljrlrmml7ilvh6zl.png)