58.7k views
4 votes
Find the solution of the differential equation f' (t) = t^4+91-3/t

having the boundary condition f(1) =1/4

User Tomocafe
by
7.4k points

1 Answer

6 votes

Answer:


\displaystyle f(t) = (t^5)/(5) + 91t - 3ln|t| - (1819)/(20)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Algebra I

  • Functions
  • Function Notation

Calculus

Derivatives

Derivative Notation

Antiderivatives - Integrals

Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Explanation:

Step 1: Define

Identify


\displaystyle f'(t) = t^4 + 91 - (3)/(t)


\displaystyle f(1) = (1)/(4)

Step 2: Integration

Integrate the derivative to find function.

  1. [Derivative] Integrate:
    \displaystyle \int {f'(t)} \, dt = \int {t^4 + 91 - (3)/(t)} \, dt
  2. Simplify:
    \displaystyle f(t) = \int {t^4 + 91 - (3)/(t)} \, dt
  3. Rewrite [Integration Property - Addition/Subtraction]:
    \displaystyle f(t) = \int {t^4} \, dt + \int {91} \, dt - \int {(3)/(t)} \, dt
  4. [1st Integral] Integrate [Integral Rule - Reverse Power Rule]:
    \displaystyle f(t) = (t^5)/(5) + \int {91} \, dt - \int {(3)/(t)} \, dt
  5. [2nd Integral] Integrate [Integral Rule - Reverse Power Rule]:
    \displaystyle f(t) = (t^5)/(5) + 91t - \int {(3)/(t)} \, dt
  6. [3rd Integral] Rewrite [Integral Property - Multiplied Constant]:
    \displaystyle f(t) = (t^5)/(5) + 91t - 3\int {(1)/(t)} \, dt
  7. [3rd Integral] Integrate:
    \displaystyle f(t) = (t^5)/(5) + 91t - 3ln|t| + C

Our general solution is
\displaystyle f(t) = (t^5)/(5) + 91t - 3ln|t| + C.

Step 3: Find Particular Solution

Find Integration Constant C for function using given condition.

  1. Substitute in condition [Function]:
    \displaystyle f(1) = (1^5)/(5) + 91(1) - 3ln|1| + C
  2. Substitute in function value:
    \displaystyle (1)/(4) = (1^5)/(5) + 91(1) - 3ln|1| + C
  3. Evaluate exponents:
    \displaystyle (1)/(4) = (1)/(5) + 91(1) - 3ln|1| + C
  4. Evaluate natural log:
    \displaystyle (1)/(4) = (1)/(5) + 91(1) - 3(0) + C
  5. Multiply:
    \displaystyle (1)/(4) = (1)/(5) + 91 - 0 + C
  6. Add:
    \displaystyle (1)/(4) = (456)/(5) - 0 + C
  7. Simplify:
    \displaystyle (1)/(4) = (456)/(5) + C
  8. [Subtraction Property of Equality] Isolate C:
    \displaystyle -(1819)/(20) = C
  9. Rewrite:
    \displaystyle C = -(1819)/(20)
  10. Substitute in C [Function]:
    \displaystyle f(t) = (t^5)/(5) + 91t - 3ln|t| - (1819)/(20)

∴ Our particular solution to the differential equation is
\displaystyle f(t) = (t^5)/(5) + 91t - 3ln|t| - (1819)/(20).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Integration

Book: College Calculus 10e

User PrecariousJimi
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories