58.7k views
4 votes
Find the solution of the differential equation f' (t) = t^4+91-3/t

having the boundary condition f(1) =1/4

User Tomocafe
by
4.4k points

1 Answer

6 votes

Answer:


\displaystyle f(t) = (t^5)/(5) + 91t - 3ln|t| - (1819)/(20)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Algebra I

  • Functions
  • Function Notation

Calculus

Derivatives

Derivative Notation

Antiderivatives - Integrals

Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Explanation:

Step 1: Define

Identify


\displaystyle f'(t) = t^4 + 91 - (3)/(t)


\displaystyle f(1) = (1)/(4)

Step 2: Integration

Integrate the derivative to find function.

  1. [Derivative] Integrate:
    \displaystyle \int {f'(t)} \, dt = \int {t^4 + 91 - (3)/(t)} \, dt
  2. Simplify:
    \displaystyle f(t) = \int {t^4 + 91 - (3)/(t)} \, dt
  3. Rewrite [Integration Property - Addition/Subtraction]:
    \displaystyle f(t) = \int {t^4} \, dt + \int {91} \, dt - \int {(3)/(t)} \, dt
  4. [1st Integral] Integrate [Integral Rule - Reverse Power Rule]:
    \displaystyle f(t) = (t^5)/(5) + \int {91} \, dt - \int {(3)/(t)} \, dt
  5. [2nd Integral] Integrate [Integral Rule - Reverse Power Rule]:
    \displaystyle f(t) = (t^5)/(5) + 91t - \int {(3)/(t)} \, dt
  6. [3rd Integral] Rewrite [Integral Property - Multiplied Constant]:
    \displaystyle f(t) = (t^5)/(5) + 91t - 3\int {(1)/(t)} \, dt
  7. [3rd Integral] Integrate:
    \displaystyle f(t) = (t^5)/(5) + 91t - 3ln|t| + C

Our general solution is
\displaystyle f(t) = (t^5)/(5) + 91t - 3ln|t| + C.

Step 3: Find Particular Solution

Find Integration Constant C for function using given condition.

  1. Substitute in condition [Function]:
    \displaystyle f(1) = (1^5)/(5) + 91(1) - 3ln|1| + C
  2. Substitute in function value:
    \displaystyle (1)/(4) = (1^5)/(5) + 91(1) - 3ln|1| + C
  3. Evaluate exponents:
    \displaystyle (1)/(4) = (1)/(5) + 91(1) - 3ln|1| + C
  4. Evaluate natural log:
    \displaystyle (1)/(4) = (1)/(5) + 91(1) - 3(0) + C
  5. Multiply:
    \displaystyle (1)/(4) = (1)/(5) + 91 - 0 + C
  6. Add:
    \displaystyle (1)/(4) = (456)/(5) - 0 + C
  7. Simplify:
    \displaystyle (1)/(4) = (456)/(5) + C
  8. [Subtraction Property of Equality] Isolate C:
    \displaystyle -(1819)/(20) = C
  9. Rewrite:
    \displaystyle C = -(1819)/(20)
  10. Substitute in C [Function]:
    \displaystyle f(t) = (t^5)/(5) + 91t - 3ln|t| - (1819)/(20)

∴ Our particular solution to the differential equation is
\displaystyle f(t) = (t^5)/(5) + 91t - 3ln|t| - (1819)/(20).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Integration

Book: College Calculus 10e

User PrecariousJimi
by
4.5k points