Let X be the random variable for the output of the machine. Transform X to a standard normal random variable Z, using the rule
Z = (X - µ)/
![\sigma](https://img.qammunity.org/2022/formulas/mathematics/college/kw4ayahal1qnmra57uobkou3wqus3khwkm.png)
where µ and
are the mean and standard deviation of X.
Pr[25 < X < 30] = Pr[(25 - 22)/4 < (X - 22)/4 < (30 - 22)/4]
… = Pr[3/4 < Z < 2]
… = Pr[Z < 2] - Pr[Z < 3/4]
… ≈ 0.9773 - 0.7734
… ≈ 0.2039