Answer:
![4.\ \sin E = \cos G](https://img.qammunity.org/2022/formulas/mathematics/college/45gkgu8hj1ys5drr7uxknh9gjzyhtraqy3.png)
Explanation:
Given
![\triangle EFG](https://img.qammunity.org/2022/formulas/mathematics/college/6wci57svr0sfpolk6xoxi2m0w8hhqiywwu.png)
--- right angle
Required
Which of the options is true
In a triangle, we have:
--- angles in a triangle
Substitute
![\angle F = 90^o](https://img.qammunity.org/2022/formulas/mathematics/college/vf946ebfw3vjl73t02me6wr2mzzmqpd05o.png)
![\angle E + 90^o + \angle G = 180^o](https://img.qammunity.org/2022/formulas/mathematics/college/qfol5gkyrdb3lipfg8vi1hap7yk2wu7ra7.png)
Collect like terms
![\angle E + \angle G = 180^o -90^o](https://img.qammunity.org/2022/formulas/mathematics/college/xh4yqek77ymz4204gdenztos9m6se30ixt.png)
![\angle E + \angle G =90^o](https://img.qammunity.org/2022/formulas/mathematics/college/7l02bf91ry9wayt2i9p0mt1y78ll25fgdk.png)
This implies that E and G are complementary angles.
For complementary angles, E and G;
and
![\sin G = \cos E](https://img.qammunity.org/2022/formulas/mathematics/college/qqbhrc1wyfs33tao4cfzyeng8ft7nkrziz.png)
Hence, (4) is true