34.8k views
4 votes
If cos() = − 2 3 and is in Quadrant III, find tan() cot() + csc(). Incorrect: Your answer is incorrect.

User Mitra
by
3.6k points

1 Answer

5 votes

Answer:


\tan(\theta) \cdot \cot(\theta) + \csc(\theta) = (5 - 3\sqrt 5)/(5)

Explanation:

Given


\cos(\theta) = -(2)/(3)


\theta \to Quadrant III

Required

Determine
\tan(\theta) \cdot \cot(\theta) + \csc(\theta)

We have:


\cos(\theta) = -(2)/(3)

We know that:


\sin^2(\theta) + \cos^2(\theta) = 1

This gives:


\sin^2(\theta) + (-(2)/(3))^2 = 1


\sin^2(\theta) + ((4)/(9)) = 1

Collect like terms


\sin^2(\theta) = 1 - (4)/(9)

Take LCM and solve


\sin^2(\theta) = (9 -4)/(9)


\sin^2(\theta) = (5)/(9)

Take the square roots of both sides


\sin(\theta) = \±(\sqrt 5)/(3)

Sin is negative in quadrant III. So:


\sin(\theta) = -(\sqrt 5)/(3)

Calculate
\csc(\theta)


\csc(\theta) = (1)/(\sin(\theta))

We have:
\sin(\theta) = -(\sqrt 5)/(3)

So:


\csc(\theta) = (1)/(-(\sqrt 5)/(3))


\csc(\theta) = (-3)/(\sqrt 5)

Rationalize


\csc(\theta) = (-3)/(\sqrt 5)*(\sqrt 5)/(\sqrt 5)


\csc(\theta) = (-3\sqrt 5)/(5)

So, we have:


\tan(\theta) \cdot \cot(\theta) + \csc(\theta)


\tan(\theta) \cdot \cot(\theta) + \csc(\theta) = \tan(\theta) \cdot (1)/(\tan(\theta)) + \csc(\theta)


\tan(\theta) \cdot \cot(\theta) + \csc(\theta) = 1 + \csc(\theta)

Substitute:
\csc(\theta) = (-3\sqrt 5)/(5)


\tan(\theta) \cdot \cot(\theta) + \csc(\theta) = 1 -(3\sqrt 5)/(5)

Take LCM


\tan(\theta) \cdot \cot(\theta) + \csc(\theta) = (5 - 3\sqrt 5)/(5)

User Matija Nalis
by
3.6k points