Answer:
The volume of can A is half the volume of can B.
Explanation:
Given
Can A and Can B
Required
The true statement
For Can A, we have:
![h =8](https://img.qammunity.org/2022/formulas/mathematics/college/o94z274yiwgc23z85bm30ikj32giyx3ilc.png)
![r = 0.5](https://img.qammunity.org/2022/formulas/mathematics/high-school/nh983hdqnop9l08dto03db0jr4doehz54b.png)
The volume is:
![Volume = \pi r^2h](https://img.qammunity.org/2022/formulas/mathematics/college/cnmwirwsm0taeebd7184nbviyyte3mlwom.png)
This gives:
![V_A = \pi * 0.5^2 * 8](https://img.qammunity.org/2022/formulas/mathematics/college/yczhkgnbh4qbkyxcmzdvx0n9y9f3dnpd45.png)
![V_A = \pi * 2](https://img.qammunity.org/2022/formulas/mathematics/college/zw0h7x6lwcefsgb0elvpjumlon2x0bjmn4.png)
![V_A = 2\pi](https://img.qammunity.org/2022/formulas/mathematics/college/guf8tqkb3yrhavxu7sa6t87eq4yiasvohz.png)
For Can B, we have:
![h =4](https://img.qammunity.org/2022/formulas/mathematics/college/t2jrb4fgxahu274behe5hvxam2w3gowmgn.png)
![r = 1](https://img.qammunity.org/2022/formulas/mathematics/college/saghibf8xuenaixiie9qrwli9624tftxew.png)
The volume is:
![Volume = \pi r^2h](https://img.qammunity.org/2022/formulas/mathematics/college/cnmwirwsm0taeebd7184nbviyyte3mlwom.png)
This gives:
![V_B = \pi * 1^2 * 4](https://img.qammunity.org/2022/formulas/mathematics/college/4nihmuv63tajt5j0bbt5oead7qpb7d6nky.png)
![V_B = \pi * 4](https://img.qammunity.org/2022/formulas/mathematics/college/7wd7mjfygwg4cy82g67qkh70icx0609b8b.png)
![V_B = 4\pi](https://img.qammunity.org/2022/formulas/mathematics/college/603mbmzsvqkr0nb6vcs1evevi631hmdv7j.png)
So, we have:
![V_A = 2\pi](https://img.qammunity.org/2022/formulas/mathematics/college/guf8tqkb3yrhavxu7sa6t87eq4yiasvohz.png)
![V_B = 4\pi](https://img.qammunity.org/2022/formulas/mathematics/college/603mbmzsvqkr0nb6vcs1evevi631hmdv7j.png)
By comparison, (d) is correct