Answer:
![P(X \geq 13) = 0.021](https://img.qammunity.org/2022/formulas/mathematics/high-school/qhzzmhhmwm0p6kyz9ep9ezyecizexgiius.png)
Explanation:
From the question we are told that:
Probability of curing patients P(x)=0.65
Sample size n=14
Generally the Binomial equation is mathematically given by
![P(X) =((n!))/(X!(n-X)!))) *p^X*(1-p)^(n-X)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4m9kg62r9htcgoxs1gnfjejo5owop8jzeo.png)
Generally the equation for Equation for at least 12 cured is mathematically given by
![P(X \geq 13) = P(X = 13)+P(X = 14)](https://img.qammunity.org/2022/formulas/mathematics/high-school/wj92brqbrsqo3wwopy8cl474capj1bq9ta.png)
For
![P(X = 13)](https://img.qammunity.org/2022/formulas/mathematics/college/g28frmob0uskojonwhxymtgao7sbcvv5hv.png)
![P(X = 13) = (14!/(13!(14-13)!))*0.65^13*(1-0.65)^(14-13) \\\\P(X = 13)= 0.018116](https://img.qammunity.org/2022/formulas/mathematics/high-school/9898rl42jb4k23oljbtumw1cb75to01lfs.png)
For
![P(X = 14)](https://img.qammunity.org/2022/formulas/mathematics/college/ou4kfaoo8it5m2sg8r1i769f4z87xpoig8.png)
![P(X = 14) = (14!/(14!(14-14)!))*0.65^14*(1-0.65)^(14-14) \\\\P(X = 14)= 0.00240318](https://img.qammunity.org/2022/formulas/mathematics/high-school/1f8q7k2hgkhded20y9brnus17abpqd3eak.png)
Therefore
![P(X \geq 13) =P(X = 13)+P(X = 14)](https://img.qammunity.org/2022/formulas/mathematics/high-school/n1cgx5xkef1xj0godm8otggu5etuzfo1gs.png)
![P(X \geq 13) = 0.018116+0.00240318](https://img.qammunity.org/2022/formulas/mathematics/high-school/uvob7wv7nr99skvs74jqxc3srmqlpgvx5b.png)
![P(X \geq 13) = 0.02051918](https://img.qammunity.org/2022/formulas/mathematics/high-school/nbh3gro5h2c71e03k9fn0116kn69gdno07.png)
![P(X \geq 13) = 0.021](https://img.qammunity.org/2022/formulas/mathematics/high-school/qhzzmhhmwm0p6kyz9ep9ezyecizexgiius.png)