Answer:
Explanation:
1). From the triangle given in the figure,
m∠BAD = 26°
By applying tangent rule in ΔADB,
tan(∠BAD) =
![\frac{\text{Opposite side}}{\text{Adjacent side}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/vukhjusqid9fxo3jewnsqt435z0du43agl.png)
tan(26°) =
![(BD)/(AD)](https://img.qammunity.org/2022/formulas/mathematics/high-school/u18xvr7j8rg1bm3pdbqg3vs65qrs40lygp.png)
BD = 21[tan(26°)]
BD = 10.24
By applying sine rule in ΔBDC,
sin(52°) =
![\frac{\text{Opposite side}}{\text{Hypotenuse}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/5jpr2e7ih2gntvhqc2dugg55cybkbun8pq.png)
sin(52°) =
![(10.24)/(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/tl12vxnw3edk25rh10r0tu51hekq2qhsto.png)
x =
![\frac{10.24}{\text{sin}(52)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/ir2pk31lbszs126016xcw46jhku181v0bp.png)
x = 12.99
x ≈ 13.0 units
2). By applying cosine rule in ΔADB,
cos(39°) =
![\frac{\text{Adjacent side}}{\text{Hypotenuse}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/2g10r4cqopjqdlu10ohof3crit2z805ax1.png)
cos(39°) =
![(BD)/(50)](https://img.qammunity.org/2022/formulas/mathematics/high-school/xi4sblmf0j71i437bmfjbet6vurbwlda8d.png)
BD = 50cos(39°)
BD = 38.86
By applying sine rule in ΔBDC,
sin(24°) =
sin(24°) =
![(38.86)/(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/hxvftzfaaewy6z7zmyc3wdgrn341q3vng6.png)
x =
![\frac{38.86}{\text{sin(24)}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/nj4xzil8ac87a3pcfdoxgmvqde1l5arbfd.png)
x = 95.54
x ≈ 95.5 units