Answer:
Step-by-step explanation:
From the given information:
The first thing we need to do is to use the formula used in-plane strain fracture toughness to determine the geometry factor
![\gamma](https://img.qammunity.org/2022/formulas/physics/high-school/lnhiry3ush4ylgna6fgsa04u894pin6rl7.png)
i.e
![K_1 = \gamma \sigma_(applied) √(Ra_1)](https://img.qammunity.org/2022/formulas/engineering/college/cxtqppvavxtsaspp7bbds63kjiwsqfojf0.png)
where;
a = crack length
geometry factor
In the first scenario, where;
Plain fracture toughness
![K_1 = 45 \ MPa √(m)](https://img.qammunity.org/2022/formulas/engineering/college/f2sikqh8vmiyknk10fuo62eqhgrazbnr9y.png)
![\sigma _(applied) = 300 \ MPa \\ \\ a_1 = 6.95 * 10^(-3) m](https://img.qammunity.org/2022/formulas/engineering/college/6868j7hkzj0o39wex44jcperu23y1vkush.png)
radius(R) = 3.142
Then, replacing it into the above equation, we have:
![45 MPa = \gamma (300 \ MPa ) \sqrt{3.142 * 0.95 * 10^(-3)} \\ \\ 45 \ MPa = 16.3902715 \gamma \\ \\ \gamma = (45 \ MPa)/(16.3902715) \\ \\ \gamma \ (geometry factor)= 2.745](https://img.qammunity.org/2022/formulas/engineering/college/85co0awwkfua5hn9h6mrxfhalu6np5hlw5.png)
Now, since we've determined the geometry factor, it will be easier to estimate the max. allowable surface length.
∴
![K_2 = \gamma \sigma_(applied) √(Ra _2)](https://img.qammunity.org/2022/formulas/engineering/college/cc6ujklg2bnkz1uj3igeiormqbsoz7bi8c.png)
![67.5= 2.745 * 300 * √(3.142 * a _2)](https://img.qammunity.org/2022/formulas/engineering/college/m40oabf2gq3erxq6e7irx749rf72plke7m.png)
![67.5= 1459.710372 √( a _2) \\ \\ (67.5)/( 1459.710372)= √( a _2) \\ \\ 0.0462420 = √( a _2) \\\\ a_2 = 0.0462420^2 \\ \\ a _ 2 = 0.002138 \\ \\ a_2 = 2.138* 10^(-3) \ m \\ \\ \mathbf{a_2 = 2.138\ mm}](https://img.qammunity.org/2022/formulas/engineering/college/dzeijqeethjjfr9492nohuugqsp6bqhqv4.png)