95.8k views
0 votes
A 50 mm 45 mm 20 mm cell phone charger has a surface temperature of Ts 33 C when plugged into an electrical wall outlet but not in use. The surface of the charger is of emissivity 0.92 and is subject to a free convection heat transfer coefficient of h 4.5 W/m2 K. The room air and wall temperatures are T 22 C and Tsur 20 C, respectively. If electricity costs C $0.18/kW h, determine the daily cost of leaving the charger plugged in when not in use.

User Levelnis
by
3.5k points

1 Answer

3 votes

Answer:

C = $0.0032 per day

Step-by-step explanation:

We are given;

Dimension of cell phone; 50 mm × 45 mm × 20 mm

Temperature of charger; T1 = 33°C = 306K

Emissivity; ε = 0.92

convection heat transfer coefficient; h = 4.5 W/m².K

Room air temperature; T∞ = 22°C = 295K

Wall temperature; T2 = 20°C = 293 K

Cost of electricity; C = $0.18/kW.h

Chargers are usually in the form of a cuboid, and thus, surface Area is;

A = (50 × 45) + 2(50 × 20) + 2(45 × 20)

A = 6050 mm²

A = 6.05 × 10^(-3) m²

Formula for total heat transfer rate is;

E_t = hA(T1 - T∞) + εσA((T1)⁴ - (T2)⁴)

Where σ is Stefan Boltzmann constant with a value of; σ = 5.67 × 10^(-8) W/m².K⁴

Thus;

E_t = 4.5 × 6.05 × 10^(-3) (306 - 295) + (0.92 × 6.05 × 10^(-3) × 5.67 × 10^(-8)(306^(4) - 293^(4)))

E_t = 0.7406 W = 0.7406 × 10^(-3) KW

Now, we know C = $0.18/kW.h

Thus daily cost which has 24 hours gives;

C = 0.18 × 0.7406 × 10^(-3) × 24

C = $0.0032 per day

User Smartmouse
by
3.0k points