90.5k views
4 votes
Find the indicated limit, if it exists.

The limit is approaching 5.

Possible Options:
a) 0
b) 8
c) 3
d) The limit does not exist​

Find the indicated limit, if it exists. The limit is approaching 5. Possible Options-example-1
User Efremidze
by
8.5k points

1 Answer

3 votes

Answer:

d) The limit does not exist

General Formulas and Concepts:

Calculus

Limits

  • Right-Side Limit:
    \displaystyle \lim_(x \to c^+) f(x)
  • Left-Side Limit:
    \displaystyle \lim_(x \to c^-) f(x)

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_(x \to c) x = c

Limit Property [Addition/Subtraction]:
\displaystyle \lim_(x \to c) [f(x) \pm g(x)] = \lim_(x \to c) f(x) \pm \lim_(x \to c) g(x)

Explanation:

*Note:

In order for a limit to exist, the right-side and left-side limits must equal each other.

Step 1: Define

Identify


\displaystyle f(x) = \left\{\begin{array}{ccc}5 - x,\ x < 5\\8,\ x = 5\\x + 3,\ x > 5\end{array}

Step 2: Find Right-Side Limit

  1. Substitute in function [Limit]:
    \displaystyle \lim_(x \to 5^+) 5 - x
  2. Evaluate limit [Limit Rule - Variable Direct Substitution]:
    \displaystyle \lim_(x \to 5^+) 5 - x = 5 - 5 = 0

Step 3: Find Left-Side Limit

  1. Substitute in function [Limit]:
    \displaystyle \lim_(x \to 5^-) x + 3
  2. Evaluate limit [Limit Rule - Variable Direct Substitution]:
    \displaystyle \lim_(x \to 5^+) x + 3 = 5 + 3 = 8

∴ Since
\displaystyle \lim_(x \to 5^+) f(x) \\eq \lim_(x \to 5^-) f(x) , then
\displaystyle \lim_(x \to 5) f(x) = DNE

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

User Ilham
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories