90.5k views
4 votes
Find the indicated limit, if it exists.

The limit is approaching 5.

Possible Options:
a) 0
b) 8
c) 3
d) The limit does not exist​

Find the indicated limit, if it exists. The limit is approaching 5. Possible Options-example-1
User Efremidze
by
6.2k points

1 Answer

3 votes

Answer:

d) The limit does not exist

General Formulas and Concepts:

Calculus

Limits

  • Right-Side Limit:
    \displaystyle \lim_(x \to c^+) f(x)
  • Left-Side Limit:
    \displaystyle \lim_(x \to c^-) f(x)

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_(x \to c) x = c

Limit Property [Addition/Subtraction]:
\displaystyle \lim_(x \to c) [f(x) \pm g(x)] = \lim_(x \to c) f(x) \pm \lim_(x \to c) g(x)

Explanation:

*Note:

In order for a limit to exist, the right-side and left-side limits must equal each other.

Step 1: Define

Identify


\displaystyle f(x) = \left\{\begin{array}{ccc}5 - x,\ x < 5\\8,\ x = 5\\x + 3,\ x > 5\end{array}

Step 2: Find Right-Side Limit

  1. Substitute in function [Limit]:
    \displaystyle \lim_(x \to 5^+) 5 - x
  2. Evaluate limit [Limit Rule - Variable Direct Substitution]:
    \displaystyle \lim_(x \to 5^+) 5 - x = 5 - 5 = 0

Step 3: Find Left-Side Limit

  1. Substitute in function [Limit]:
    \displaystyle \lim_(x \to 5^-) x + 3
  2. Evaluate limit [Limit Rule - Variable Direct Substitution]:
    \displaystyle \lim_(x \to 5^+) x + 3 = 5 + 3 = 8

∴ Since
\displaystyle \lim_(x \to 5^+) f(x) \\eq \lim_(x \to 5^-) f(x) , then
\displaystyle \lim_(x \to 5) f(x) = DNE

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

User Ilham
by
5.8k points