42.3k views
17 votes
Solve for x using the figure to the right.
x=

Solve for x using the figure to the right. x=-example-1

2 Answers

4 votes

Solution:

Finding the hypotenuse of the small triangle:


  • a^(2) = x^(2) + 5^(2)
  • =>
    \sqrt{a^(2)} = \sqrt{x^(2) + 5^(2)}
  • =>
    a = \sqrt{x^(2) + 25}

Finding the hypotenuse of the big triangle:


  • b^(2) = x^(2) + 45

  • \sqrt{b^(2) } = \sqrt{x^(2) + 45^(2) }

  • b = \sqrt{x^(2) + 2025 }

Finding the value of x.


  • (45 + 5)^(2) = (\sqrt{x^(2) + 25} )^(2) + (\sqrt{x^(2) + 2025} )^(2)

  • (50)^(2) = (\sqrt{x^(2) + 25} )(\sqrt{x^(2) + 25} ) + (\sqrt{x^(2) + 2025} )(\sqrt{x^(2) + 2025} )

  • 2500 = x^(2) + 25 + {x^(2) + 2025}

  • 2500 = 2x^(2) + 2050

  • 450 = 2x^(2)

  • 225 = x^(2)

  • x = \±15
User ESI
by
8.8k points
10 votes

Answer:

x = 15

Step-by-step explanation:

we have to find both the hypotenuse of the triangles to solve this.

for the smaller triangle:

x² + 5² = h²

h = √x² + 5²

for the bigger triangle:

x² + 45² = h²

h = √x² + 45²

now that if you look, we found the sides - adjacent and leg side of the Δ

solving using Pythagoras theorem:

a² + b² = c²

(√x² + 45²)² + (√x² + 5²)² = 50²

x² + 2025 + x² + 25 = 2500

2x² = 450

x² = 225

x = ± 15

x = 15

User Mahmoud Abdelkader
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories