Answer:
![\sigma (y_1-y_2)=39](https://img.qammunity.org/2022/formulas/mathematics/college/mbz6o3c8kf5eg8s4415hmy7wotfrfydsry.png)
Explanation:
From the question we are told that:
Urn 1 :2 Red, 3 Yellow
Urn 2:3 Red, 7 Yellow
Sample 1
![n_1=75\ balls](https://img.qammunity.org/2022/formulas/mathematics/college/sd4qzprzcaem1et9lma3a9ojoip6bpu7gs.png)
Sample 2
![n_2=100\ balls](https://img.qammunity.org/2022/formulas/mathematics/college/8lwvk8vr2vznw44dqsgs1l0ic06pbzizaj.png)
Generally the Probability of Red ball drawn is mathematically given by
For Urn 1
![P(R)_1=(2)/(5)](https://img.qammunity.org/2022/formulas/mathematics/college/r0vpsdljy1p40lytcr9q6fzfuhvr5pggqa.png)
![P(R)_1=0.4](https://img.qammunity.org/2022/formulas/mathematics/college/esedor55szbgwu3dpienta05g85xyfbemq.png)
For Urn 2
![P(R)_1=(3)/(10)](https://img.qammunity.org/2022/formulas/mathematics/college/5qg0h4zv79lo1ri0a8i758cbzt3kezrjk4.png)
![P(R)_1=0.3](https://img.qammunity.org/2022/formulas/mathematics/college/nd1gf8bhz031j97v0w2rzfrq31act3bufz.png)
Generally the equation for Variance of two independent variables
is mathematically given by
![\sigma (y_1-y_2)=\sigma y_2 +(-1)^2 \sigma(x_1)](https://img.qammunity.org/2022/formulas/mathematics/college/shxg3luafo65b84nvrsap1jfixhf7579ay.png)
Where red balls drawn from both Urn is Modeled
![Urn_1\ is\ Modeled\ as (n_1=75,p_1=0.4)](https://img.qammunity.org/2022/formulas/mathematics/college/lath7avpqqkdx0g0fozbgly5yj5cgp5u6o.png)
![Urn_2\ is\ Modeled\ as\ (n_2=100,p_2=0.3)](https://img.qammunity.org/2022/formulas/mathematics/college/hhw3m28jtkazfhtnbg9dzszjndw6q0095t.png)
![\sigma (y_1-y_2)=n_2 p_2(1_p_2)+n_1*p_1(1-p_1)](https://img.qammunity.org/2022/formulas/mathematics/college/sieyottk84mcam214ueyz0i2trtkbntw4f.png)
![\sigma (y_1-y_2)=100*0.3(1-0.3)+75*0.4(1-0.4)](https://img.qammunity.org/2022/formulas/mathematics/college/modkwnob57q6jnp3seic2odbcicxq7blk8.png)
![\sigma (y_1-y_2)=39](https://img.qammunity.org/2022/formulas/mathematics/college/mbz6o3c8kf5eg8s4415hmy7wotfrfydsry.png)
Therefore the variance of the random variable defined as the number of red balls is
![\sigma (y_1-y_2)=39](https://img.qammunity.org/2022/formulas/mathematics/college/mbz6o3c8kf5eg8s4415hmy7wotfrfydsry.png)