Answer:
Explanation:
GIVEN :-
A quadratic function is represented by the graph in which :-
- Vertex of the parabola = (-1 , -2)
- The function intersects x-axis at (-3 , 0) and (1 , 0)
- Y-intercept of the function = -1.5
TO FIND :-
GENERAL CONCEPT USED IN THIS QUESTION :-
A quadratic function has 2 forms :-
- General form → f(x) = ax² + bx + c
- Standard form → f(x) = a(x - h)² + k [∵ where h = x-coordinate of the vertex of the function & k = y-coordinate of the vertex of the function.]
SOLUTION :-
The quadratic function in the graph intersects x-axis at two points (-3 , 0) & (1 , 0). But there are infinite parabolas which also intersect the same two points. And those parabolas have their unique quadratic function.
Method 1 (System of equations method) -
To find the unique quadratic function , you need to use three points on the
curve so that you can form 3 equations & solve them.
Using the General form of quadratic function , substitute the known values for x & y.
Let the three points be -
- (-3 , 0)
- (1 , 0)
- (0 , -1.5)
Substitute (-3 , 0) in general form of function -
![0 = a(-3)^2 + b(-3) + c](https://img.qammunity.org/2022/formulas/mathematics/high-school/ct17b99o61ltu0vkg24w4ht3ykme07tvry.png)
(eqn.1)
Substitute (1 , 0) in general form of function -
![0 = a(1)^2 + b(1) + c](https://img.qammunity.org/2022/formulas/mathematics/high-school/9uatjr089jlooe1kt2fszpnbjkbiriiyf0.png)
(eqn.2)
Substitute (0 , -1.5) in general form of function -
![-1.5 = a(0)^2 + b(0) + c](https://img.qammunity.org/2022/formulas/mathematics/high-school/qaebkqq4dro3jjp4czf5g1jn2n2bjiufn6.png)
![=> c = -1.5](https://img.qammunity.org/2022/formulas/mathematics/high-school/f543thuli16cz6o4ul6umwnm4gjjjufu14.png)
Substitute c = -1.5 in -
1) eqn.1 →
![9a - 3b - 1.5 = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/ntsb9gu0jjhwqukkuqila2cksbpl0sup7a.png)
![=> 3(3a-b) = 1.5](https://img.qammunity.org/2022/formulas/mathematics/high-school/63k0eure55tpt8kyik2otuuwq3g1m3au9a.png)
(eqn.4)
2) eqn.2 →
![a+b-1.5=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/xhv2or9to5alxfytif3lebv3vfzi7yojuk.png)
(eqn.5)
Add eqn.4 & eqn.5 to get the value of 'a'.
![(3a-b)+(a+b) = 0.5+1.5](https://img.qammunity.org/2022/formulas/mathematics/high-school/w47c3ghl227d1pi7q4y8km4xl2urypqymd.png)
![=> 4a = 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/b9nx2o26h26fqdcrtntf3pdet2icwrgk56.png)
![=> a = (2)/(4) = (1)/(2) = 0.5](https://img.qammunity.org/2022/formulas/mathematics/high-school/sf9ak323oiieh0s3m90aaiaavcdpk6hkbo.png)
Substitute a = 0.5 in eqn.5 -
![0.5 + b = 1.5](https://img.qammunity.org/2022/formulas/mathematics/high-school/20zn5pz55go2ft323qttvefxnzbyx7zhub.png)
![=> b = 1.5 - 0.5 = 1](https://img.qammunity.org/2022/formulas/mathematics/high-school/hf6t42o0ousf7ycz0l9v9v39e8pvlqf7yw.png)
Now, rewrite the function in general form by putting the values of 'a' , 'b' & 'c'.
![f(x) = (0.5)x^2 + (1)x - 1.5](https://img.qammunity.org/2022/formulas/mathematics/high-school/m4ijaxkrpn16a1oybwrkvlobmrydwh2aas.png)
![=> f(x) = 0.5(x^2 + 2x - 3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/7lu1l8kenwhovt3g2z8le683wfuv9pyzpn.png)
Factorise the quadratic polynomial.
![=> f(x) = 0.5(x^2 + 3x - x - 3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/8lewet6gyuexn6lm3a1ujca18wq2le3t57.png)
![=> f(x) = 0.5[x(x+3)-1(x+3)]](https://img.qammunity.org/2022/formulas/mathematics/high-school/qwyao03amveagmf57weazba4h4bhup7nsl.png)
∴
![f(x) = 0.5(x+3)(x-1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/7liktmia1w0ntfu7049jynws1f0tctfylj.png)
Method 2 (Vertex method) -
Another way to find the function is by taking any point on the curve & using the vertex of the parabola ; substitute the known values for x , y , h & k in the Standard form of the function.
Let that point on the curve be (-3 , 0)
Vertex = (-1 , -2)
Substitute the values of x , y , h & k in Standard form of function.
![0 = a[-3 - (-1)]^2 + (-2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/6npycq6wwypdklywtaytkd7uf8lgoc0bgd.png)
![=> 0 = 4a-2](https://img.qammunity.org/2022/formulas/mathematics/high-school/xjbygi6ewzjue1qp56n99ixzox2tbeara4.png)
![=> 4a = 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/b9nx2o26h26fqdcrtntf3pdet2icwrgk56.png)
![=> a = (2)/(4) = 0.5](https://img.qammunity.org/2022/formulas/mathematics/high-school/750zumw29cayle3q15efdsgfakgozd23rj.png)
Now rewrite the Standard form of the function by putting the values of h , k & a.
![f(x) = 0.5(x+1)^2-2](https://img.qammunity.org/2022/formulas/mathematics/high-school/vp8jok88s1vvtzgn6r33nzxz7263yrfflp.png)
Expand it.
![=> f(x) = 0.5(x^2+2x+1)-2](https://img.qammunity.org/2022/formulas/mathematics/high-school/fljzza3b5t3bqknj5ko8uhbn5purnskqju.png)
![=> f(x) = 0.5x^2+x+0.5-2](https://img.qammunity.org/2022/formulas/mathematics/high-school/bdgx5ptdy63yj2avr2ka3ornz5y0h4gv67.png)
![=>f(x) = 0.5x^2 + x- 1.5](https://img.qammunity.org/2022/formulas/mathematics/high-school/7my2rocntj2681fw5qq9c9bp20jp2nd6b5.png)
![=>f(x) = 0.5(x^2 + 2x - 3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/kb8rvvhtv0egffbflmlqn7rsgzzmneod1k.png)
Factorising it will give the final answer.
∴
![f(x) = 0.5(x+3)(x-1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/7liktmia1w0ntfu7049jynws1f0tctfylj.png)