72.6k views
3 votes
Consider the function g(x) = (x-e)^3e^-(x-e). Find all critical points and points of inflection (x, g(x)) of the function g.

1 Answer

2 votes

Answer:

The answer is "
cirtical\ points \ (x,g(x))\equiv (e,0),(e+3,(27)/(e^3))"

Explanation:

Given:


g(x) = (x-e)^3e^(-(x-e))

Find critical points:


g(x) = (x-e)^3e^((e-x))

differentiate the value with respect of x:


\to g'(x)= (x-e)^3 (d)/(dx)e^(e-r) +e^(e-r) (d)/(dx)(x-e)^3=(x-e)^2 e^((e-x)) [-x+e+3]

critical points
g'(x)=0


\to (x-e)^2 e^((e-x)) [e+3-x]=0\\\\\to e^((e-x))\\eq 0 \\\\\to (x-e)^2=0\\\\ \to [e+3-x]=0\\\\\to x=e\\\\\to x=e+3\\\\\to x= e,e+3

So,

The critical points of
(x,g(x))\equiv (e,0),(e+3,(27)/(e^3))

User Cmota
by
4.8k points