Answer:
The result of the integral is
![(\pi)/(4)(-cos(16) + \frac{9})](https://img.qammunity.org/2022/formulas/mathematics/college/606i07kaflazkotq009cmq7nrcf3ahe0zu.png)
Explanation:
Polar coordinates:
In polar coordinates, we have that:
![x^2 + y^2 = r^2](https://img.qammunity.org/2022/formulas/mathematics/college/4s6nn5hbwswkdyp604zb4bsmcq3ceyxzh9.png)
And
![\int \int_(dA) f(x,y) da = \int \int f(r) r dr d\theta](https://img.qammunity.org/2022/formulas/mathematics/college/w914c38ntymjqzulr8bdgenzwdis5unovg.png)
In this question:
![\int \int_(dA) sin((x^2+y^2)) dA = \int \int_(dR) = sin(r^2)r dr d\theta](https://img.qammunity.org/2022/formulas/mathematics/college/bjslmpcmtaojcphugilulsq2iqrehg97i2.png)
Region in the first quadrant between the circles with center the origin and radii 3 and 4
First quadrant means that
ranges between
and
![(\pi)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/no1kq3wgid4u8b0k14a13z2u0dx4h45x8m.png)
Between these circles means that r ranges between 3 and 4. So
![\int \int_(dR) = sin(r^2)r dr d\theta = \int_(0)^{(\pi)/(2)} \int_(3)^(4) sin(r^2) r dr d\theta](https://img.qammunity.org/2022/formulas/mathematics/college/zpjxcs0mjcjp56y7rwounk7elbf4jffh07.png)
Applying the inner integral:
![\int_(3)^(4) sin(r^2) r dr](https://img.qammunity.org/2022/formulas/mathematics/college/wvbhlgwue4rx7pdviuetwatrwx3iw7l1h5.png)
Using substitution, with
, and considering that the integral of the sine is minus cosine, we have:
![-(cos(r^2))/(2)|_(3){4} = (1)/(2)(-cos(16) + \frac{9})](https://img.qammunity.org/2022/formulas/mathematics/college/5hnbn8wvgogf806qvpjdvnt34uiyv0bsra.png)
Applying the outer integral:
![\int_(0)^{(\pi)/(2)} (1)/(2)(-cos(16) + \frac{9}) d\theta](https://img.qammunity.org/2022/formulas/mathematics/college/5lfb2z8f2em1nuvvxoum84ekgquopt28k1.png)
Has no factors of
, so the result is the constant multiplied by
, and then we apply the fundamental theorem.
![(\theta)/(2)(-cos(16) + \frac{9}) = (\pi)/(4)(-cos(16) + \frac{9})](https://img.qammunity.org/2022/formulas/mathematics/college/b7sj6co0gg3g3nscxhovtgr70ewdnt523j.png)
The result of the integral is
![(\pi)/(4)(-cos(16) + \frac{9})](https://img.qammunity.org/2022/formulas/mathematics/college/606i07kaflazkotq009cmq7nrcf3ahe0zu.png)